Iwo Naglik
2024
ASTE-Transformer: Modelling Dependencies in Aspect-Sentiment Triplet Extraction
Iwo Naglik
|
Mateusz Lango
Findings of the Association for Computational Linguistics: EMNLP 2024
Aspect-Sentiment Triplet Extraction (ASTE) is a recently proposed task of aspect-based sentiment analysis that consists in extracting (aspect phrase, opinion phrase, sentiment polarity) triples from a given sentence. Recent state-of-the-art methods approach this task by first extracting all possible text spans from a given text, then filtering the potential aspect and opinion phrases with a classifier, and finally considering all their pairs with another classifier that additionally assigns sentiment polarity to them. Although several variations of the above scheme have been proposed, the common feature is that the final result is constructed by a sequence of independent classifier decisions. This hinders the exploitation of dependencies between extracted phrases and prevents the use of knowledge about the interrelationships between classifier predictions to improve performance. In this paper, we propose a new ASTE approach consisting of three transformer-inspired layers, which enables the modelling of dependencies both between phrases and between the final classifier decisions. Experimental results show that the method achieves higher performance in terms of F1 measure than other methods studied on popular benchmarks. In addition, we show that a simple pre-training technique further improves the performance of the model.
Polish-ASTE: Aspect-Sentiment Triplet Extraction Datasets for Polish
Marta Lango
|
Borys Naglik
|
Mateusz Lango
|
Iwo Naglik
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Aspect-Sentiment Triplet Extraction (ASTE) is one of the most challenging and complex tasks in sentiment analysis. It concerns the construction of triplets that contain an aspect, its associated sentiment polarity, and an opinion phrase that serves as a rationale for the assigned polarity. Despite the growing popularity of the task and the many machine learning methods being proposed to address it, the number of datasets for ASTE is very limited. In particular, no dataset is available for any of the Slavic languages. In this paper, we present two new datasets for ASTE containing customer opinions about hotels and purchased products expressed in Polish. We also perform experiments with two ASTE techniques combined with two large language models for Polish to investigate their performance and the difficulty of the assembled datasets. The new datasets are available under a permissive licence and have the same file format as the English datasets, facilitating their use in future research.
Search