Jack P. C. Verhoosel


2020

pdf bib
Towards Data-driven Ontologies: a Filtering Approach using Keywords and Natural Language Constructs
Maaike de Boer | Jack P. C. Verhoosel
Proceedings of the Twelfth Language Resources and Evaluation Conference

Creating ontologies is an expensive task. Our vision is that we can automatically generate ontologies based on a set of relevant documents to create a kick-start in ontology creating sessions. In this paper, we focus on enhancing two often used methods, OpenIE and co-occurrences. We evaluate the methods on two document sets, one about pizza and one about the agriculture domain. The methods are evaluated using two types of F1-score (objective, quantitative) and through a human assessment (subjective, qualitative). The results show that 1) Cooc performs both objectively and subjectively better than OpenIE; 2) the filtering methods based on keywords and on Word2vec perform similarly; 3) the filtering methods both perform better compared to OpenIE and similar to Cooc; 4) Cooc-NVP performs best, especially considering the subjective evaluation. Although, the investigated methods provide a good start for extracting an ontology out of a set of domain documents, various improvements are still possible, especially in the natural language based methods.
Search
Co-authors
Venues