We demonstrate substantial performance gains in zero-shot dialogue state tracking (DST) by enhancing training data diversity through synthetic data generation.Existing DST datasets are severely limited in the number of application domains and slot types they cover due to the high costs of data collection, restricting their adaptability to new domains.This work addresses this challenge with a novel, fully automatic data generation approach that creates synthetic zero-shot DST datasets.Distinguished from previous methods, our approach can generate dialogues across a massive range of application domains, complete with silver-standard dialogue state annotations and slot descriptions.This technique is used to create the D0T dataset for training zero-shot DST models, encompassing an unprecedented 1,000+ domains. Experiments on the MultiWOZ benchmark show that training models on diverse synthetic data improves Joint Goal Accuracy by 6.7%, achieving results competitive with models 13.5 times larger than ours.
The challenge of defining a slot schema to represent the state of a task-oriented dialogue system is addressed by Slot Schema Induction (SSI), which aims to automatically induce slots from unlabeled dialogue data. Whereas previous approaches induce slots by clustering value spans extracted directly from the dialogue text, we demonstrate the power of discovering slots using a generative approach. By training a model to generate slot names and values that summarize key dialogue information with no prior task knowledge, our SSI method discovers high-quality candidate information for representing dialogue state. These discovered slot-value candidates can be easily clustered into unified slot schemas that align well with human-authored schemas. Experimental comparisons on the MultiWOZ and SGD datasets demonstrate that Generative Dialogue State Inference (GenDSI) outperforms the previous state-of-the-art on multiple aspects of the SSI task.
Human evaluation has been widely accepted as the standard for evaluating chat-oriented dialogue systems. However, there is a significant variation in previous work regarding who gets recruited as evaluators. Evaluator groups such as domain experts, university students, and crowdworkers have been used to assess and compare dialogue systems, although it is unclear to what extent the choice of an evaluator group can affect results. This paper analyzes the evaluator group impact on dialogue system evaluation by testing 4 state-of-the-art dialogue systems using 4 distinct evaluator groups. Our analysis reveals a robustness towards evaluator groups for Likert evaluations that is not seen for Pairwise, with only minor differences observed when changing evaluator groups. Furthermore, two notable limitations to this robustness are observed, which reveal discrepancies between evaluators with different levels of chatbot expertise and indicate that evaluator objectivity is beneficial for certain dialogue metrics.
Despite tremendous advancements in dialogue systems, stable evaluation still requires human judgments producing notoriously high-variance metrics due to their inherent subjectivity. Moreover, methods and labels in dialogue evaluation are not fully standardized, especially for open-domain chats, with a lack of work to compare and assess the validity of those approaches. The use of inconsistent evaluation can misinform the performance of a dialogue system, which becomes a major hurdle to enhance it. Thus, a dimensional evaluation of chat-oriented open-domain dialogue systems that reliably measures several aspects of dialogue capabilities is desired. This paper presents a novel human evaluation method to estimate the rates of many{pasted macro ‘LN’} dialogue system behaviors. Our method is used to evaluate four state-of-the-art open-domain dialogue systems and compared with existing approaches. The analysis demonstrates that our behavior method is more suitable than alternative Likert-style or comparative approaches for dimensional evaluation of these systems.
Improving user experience of a dialogue system often requires intensive developer effort to read conversation logs, run statistical analyses, and intuit the relative importance of system shortcomings. This paper presents a novel approach to automated analysis of conversation logs that learns the relationship between user-system interactions and overall dialogue quality. Unlike prior work on utterance-level quality prediction, our approach learns the impact of each interaction from the overall user rating without utterance-level annotation, allowing resultant model conclusions to be derived on the basis of empirical evidence and at low cost. Our model identifies interactions that have a strong correlation with the overall dialogue quality in a chatbot setting. Experiments show that the automated analysis from our model agrees with expert judgments, making this work the first to show that such weakly-supervised learning of utterance-level quality prediction is highly achievable.
This demo paper presents Emora STDM (State Transition Dialogue Manager), a dialogue system development framework that provides novel workflows for rapid prototyping of chat-based dialogue managers as well as collaborative development of complex interactions. Our framework caters to a wide range of expertise levels by supporting interoperability between two popular approaches, state machine and information state, to dialogue management. Our Natural Language Expression package allows seamless integration of pattern matching, custom NLP modules, and database querying, that makes the workflows much more efficient. As a user study, we adopt this framework to an interdisciplinary undergraduate course where students with both technical and non-technical backgrounds are able to develop creative dialogue managers in a short period of time.