James Hensman
2024
Learning to Extract Structured Entities Using Language Models
Haolun Wu
|
Ye Yuan
|
Liana Mikaelyan
|
Alexander Meulemans
|
Xue Liu
|
James Hensman
|
Bhaskar Mitra
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Recent advances in machine learning have significantly impacted the field of information extraction, with Language Models (LMs) playing a pivotal role in extracting structured information from unstructured text. Prior works typically represent information extraction as triplet-centric and use classical metrics such as precision and recall for evaluation. We reformulate the task to be entity-centric, enabling the use of diverse metrics that can provide more insights from various perspectives. We contribute to the field by introducing Structured Entity Extraction and proposing the Approximate Entity Set OverlaP (AESOP) metric, designed to appropriately assess model performance. Later, we introduce a new Multistage Structured Entity Extraction (MuSEE) model that harnesses the power of LMs for enhanced effectiveness and efficiency by decomposing the extraction task into multiple stages. Quantitative and human side-by-side evaluations confirm that our model outperforms baselines, offering promising directions for future advancements in structured entity extraction. Our source code is available at https://github.com/microsoft/Structured-Entity-Extraction.
Search
Fix data
Co-authors
- Xue Liu 1
- Alexander Meulemans 1
- Liana Mikaelyan 1
- Bhaskar Mitra 1
- Haolun Wu 1
- show all...
- Ye Yuan 1