Jan Cegin


2024

pdf bib
Fighting Randomness with Randomness: Mitigating Optimisation Instability of Fine-Tuning using Delayed Ensemble and Noisy Interpolation
Branislav Pecher | Jan Cegin | Robert Belanec | Jakub Simko | Ivan Srba | Maria Bielikova
Findings of the Association for Computational Linguistics: EMNLP 2024

While fine-tuning of pre-trained language models generally helps to overcome the lack of labelled training samples, it also displays model performance instability. This instability mainly originates from randomness in initialisation or data shuffling. To address this, researchers either modify the training process or augment the available samples, which typically results in increased computational costs. We propose a new mitigation strategy, called **Delayed Ensemble with Noisy Interpolation (DENI)**, that leverages the strengths of ensembling, noise regularisation and model interpolation, while retaining computational efficiency. We compare DENI with 9 representative mitigation strategies across 3 models, 4 tuning strategies and 7 text classification datasets. We show that: 1) DENI outperforms the best performing mitigation strategy (Ensemble), while using only a fraction of its cost; 2) the mitigation strategies are beneficial for parameter-efficient fine-tuning (PEFT) methods, outperforming full fine-tuning in specific cases; and 3) combining DENI with data augmentation often leads to even more effective instability mitigation.

pdf bib
Effects of diversity incentives on sample diversity and downstream model performance in LLM-based text augmentation
Jan Cegin | Branislav Pecher | Jakub Simko | Ivan Srba | Maria Bielikova | Peter Brusilovsky
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The latest generative large language models (LLMs) have found their application in data augmentation tasks, where small numbers of text samples are LLM-paraphrased and then used to fine-tune downstream models. However, more research is needed to assess how different prompts, seed data selection strategies, filtering methods, or model settings affect the quality of paraphrased data (and downstream models). In this study, we investigate three text diversity incentive methods well established in crowdsourcing: taboo words, hints by previous outlier solutions, and chaining on previous outlier solutions. Using these incentive methods as part of instructions to LLMs augmenting text datasets, we measure their effects on generated texts’ lexical diversity and downstream model performance. We compare the effects over 5 different LLMs, 6 datasets and 2 downstream models. We show that diversity is most increased by taboo words, but downstream model performance is highest with hints.

2023

pdf bib
ChatGPT to Replace Crowdsourcing of Paraphrases for Intent Classification: Higher Diversity and Comparable Model Robustness
Jan Cegin | Jakub Simko | Peter Brusilovsky
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The emergence of generative large language models (LLMs) raises the question: what will be its impact on crowdsourcing? Traditionally, crowdsourcing has been used for acquiring solutions to a wide variety of human-intelligence tasks, including ones involving text generation, modification or evaluation. For some of these tasks, models like ChatGPT can potentially substitute human workers. In this study, we investigate whether this is the case for the task of paraphrase generation for intent classification. We apply data collection methodology of an existing crowdsourcing study (similar scale, prompts and seed data) using ChatGPT and Falcon-40B. We show that ChatGPT-created paraphrases are more diverse and lead to at least as robust models.