Javier Parapar
2024
Delving into the Depths: Evaluating Depression Severity through BDI-biased Summaries
Mario Aragon
|
Javier Parapar
|
David E Losada
Proceedings of the 9th Workshop on Computational Linguistics and Clinical Psychology (CLPsych 2024)
Depression is a global concern suffered by millions of people, significantly impacting their thoughts and behavior. Over the years, heightened awareness, spurred by health campaigns and other initiatives, has driven the study of this disorder using data collected from social media platforms. In our research, we aim to gauge the severity of symptoms related to depression among social media users. The ultimate goal is to estimate the user’s responses to a well-known standardized psychological questionnaire, the Beck Depression Inventory-II (BDI). This is a 21-question multiple-choice self-report inventory that covers multiple topics about how the subject has been feeling. Mining users’ social media interactions and understanding psychological states represents a challenging goal. To that end, we present here an approach based on search and summarization that extracts multiple BDI-biased summaries from the thread of users’ publications. We also leverage a robust large language model to estimate the potential answer for each BDI item. Our method involves several steps. First, we employ a search strategy based on sentence similarity to obtain pertinent extracts related to each topic in the BDI questionnaire. Next, we compile summaries of the content of these groups of extracts. Last, we exploit chatGPT to respond to the 21 BDI questions, using the summaries as contextual information in the prompt. Our model has undergone rigorous evaluation across various depression datasets, yielding encouraging results. The experimental report includes a comparison against an assessment done by expert humans and competes favorably with state-of-the-art methods.
2023
Semantic Similarity Models for Depression Severity Estimation
Anxo Pérez
|
Neha Warikoo
|
Kexin Wang
|
Javier Parapar
|
Iryna Gurevych
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Depressive disorders constitute a severe public health issue worldwide. However, public health systems have limited capacity for case detection and diagnosis. In this regard, the widespread use of social media has opened up a way to access public information on a large scale. Computational methods can serve as support tools for rapid screening by exploiting this user-generated social media content. This paper presents an efficient semantic pipeline to study depression severity in individuals based on their social media writings. We select test user sentences for producing semantic rankings over an index of representative training sentences corresponding to depressive symptoms and severity levels. Then, we use the sentences from those results as evidence for predicting symptoms severity. For that, we explore different aggregation methods to answer one of four Beck Depression Inventory (BDI-II) options per symptom. We evaluate our methods on two Reddit-based benchmarks, achieving improvement over state of the art in terms of measuring depression level.
Search
Fix data
Co-authors
- Mario Aragón 1
- Iryna Gurevych 1
- David E. Losada 1
- Anxo Pérez 1
- Kexin Wang 1
- show all...