Javier Turek
2023
Humans and language models diverge when predicting repeating text
Aditya Vaidya
|
Javier Turek
|
Alexander Huth
Proceedings of the 27th Conference on Computational Natural Language Learning (CoNLL)
Language models that are trained on the next-word prediction task have been shown to accurately model human behavior in word prediction and reading speed. In contrast with these findings, we present a scenario in which the performance of humans and LMs diverges. We collected a dataset of human next-word predictions for five stimuli that are formed by repeating spans of text. Human and GPT-2 LM predictions are strongly aligned in the first presentation of a text span, but their performance quickly diverges when memory (or in-context learning) begins to play a role. We traced the cause of this divergence to specific attention heads in a middle layer. Adding a power-law recency bias to these attention heads yielded a model that performs much more similarly to humans. We hope that this scenario will spur future work in bringing LMs closer to human behavior.
2021
Selecting Informative Contexts Improves Language Model Fine-tuning
Richard Antonello
|
Nicole Beckage
|
Javier Turek
|
Alexander Huth
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
Language model fine-tuning is essential for modern natural language processing, but is computationally expensive and time-consuming. Further, the effectiveness of fine-tuning is limited by the inclusion of training examples that negatively affect performance. Here we present a general fine-tuning method that we call information gain filtration for improving the overall training efficiency and final performance of language model fine-tuning. We define the information gain of an example as the improvement on a validation metric after training on that example. A secondary learner is then trained to approximate this quantity. During fine-tuning, this learner selects informative examples and skips uninformative ones. We show that our method has consistent improvement across datasets, fine-tuning tasks, and language model architectures. For example, we achieve a median perplexity of 54.0 on a books dataset compared to 57.3 for standard fine-tuning. We present statistical evidence that offers insight into the improvements of our method over standard fine-tuning. The generality of our method leads us to propose a new paradigm for language model fine-tuning — we encourage researchers to release pretrained secondary learners on common corpora to promote efficient and effective fine-tuning, thereby improving the performance and reducing the overall energy footprint of language model fine-tuning.
Search