Jered Mcinerney

Also published as: Jered McInerney


2024

pdf bib
Open (Clinical) LLMs are Sensitive to Instruction Phrasings
Alberto Mario Ceballos-Arroyo | Monica Munnangi | Jiuding Sun | Karen Zhang | Jered McInerney | Byron C. Wallace | Silvio Amir
Proceedings of the 23rd Workshop on Biomedical Natural Language Processing

Instruction-tuned Large Language Models (LLMs) can perform a wide range of tasks given natural language instructions to do so, but they are sensitive to how such instructions are phrased. This issue is especially concerning in healthcare, as clinicians are unlikely to be experienced prompt engineers and the potential consequences of inaccurate outputs are heightened in this domain. This raises a practical question: How robust are instruction-tuned LLMs to natural variations in the instructions provided for clinical NLP tasks? We collect prompts from medical doctors across a range of tasks and quantify the sensitivity of seven LLMs—some general, others specialized—to natural (i.e., non-adversarial) instruction phrasings. We find that performance varies substantially across all models, and that—perhaps surprisingly—domain-specific models explicitly trained on clinical data are especially brittle, compared to their general domain counterparts. Further, arbitrary phrasing differences can affect fairness, e.g., valid but distinct instructions for mortality prediction yield a range both in overall performance, and in terms of differences between demographic groups.

2023

pdf bib
Automatically Summarizing Evidence from Clinical Trials: A Prototype Highlighting Current Challenges
Sanjana Ramprasad | Jered Mcinerney | Iain Marshall | Byron Wallace
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations

In this work we present TrialsSummarizer, a system that aims to automatically summarize evidence presented in the set of randomized controlled trials most relevant to a given query. Building on prior work, the system retrieves trial publications matching a query specifying a combination of condition, intervention(s), and outcome(s), and ranks these according to sample size and estimated study quality. The top-k such studies are passed through a neural multi-document summarization system, yielding a synopsis of these trials. We consider two architectures: A standard sequence-to-sequence model based on BART, and a multi-headed architecture intended to provide greater transparency and controllability to end-users. Both models produce fluent and relevant summaries of evidence retrieved for queries, but their tendency to introduce unsupported statements render them inappropriate for use in this domain at present. The proposed architecture may help users verify outputs allowing users to trace generated tokens back to inputs. The demonstration video can be found at https://vimeo.com/735605060The prototype, source code, and model weights are available at: https://sanjanaramprasad.github.io/trials-summarizer/

2022

pdf bib
That’s the Wrong Lung! Evaluating and Improving the Interpretability of Unsupervised Multimodal Encoders for Medical Data
Jered McInerney | Geoffrey Young | Jan-Willem van de Meent | Byron Wallace
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Pretraining multimodal models on Electronic Health Records (EHRs) provides a means of learning representations that can transfer to downstream tasks with minimal supervision. Recent multimodal models induce soft local alignments between image regions and sentences. This is of particular interest in the medical domain, where alignments might highlight regions in an image relevant to specific phenomena described in free-text. While past work has suggested that attention “heatmaps” can be interpreted in this manner, there has been little evaluation of such alignments. We compare alignments from a state-of-the-art multimodal (image and text) model for EHR with human annotations that link image regions to sentences. Our main finding is that the text has an often weak or unintuitive influence on attention; alignments do not consistently reflect basic anatomical information. Moreover, synthetic modifications — such as substituting “left” for “right” — do not substantially influence highlights. Simple techniques such as allowing the model to opt out of attending to the image and few-shot finetuning show promise in terms of their ability to improve alignments with very little or no supervision. We make our code and checkpoints open-source.