Jessica Maria Echterhoff
2024
MUSCLE: A Model Update Strategy for Compatible LLM Evolution
Jessica Maria Echterhoff
|
Fartash Faghri
|
Raviteja Vemulapalli
|
Ting-Yao Hu
|
Chun-Liang Li
|
Oncel Tuzel
|
Hadi Pouransari
Findings of the Association for Computational Linguistics: EMNLP 2024
Large Language Models (LLMs) are regularly updated to enhance performance, typically through changes in data or architecture. Within the update process, developers often prioritize improving overall performance metrics, paying less attention to maintaining compatibility with earlier model versions. Instance-level degradation (instance regression) of performance from one model version to the next can interfere with a user’s mental model of the capabilities of a particular language model. Users having to adapt their mental model with every update can lead to dissatisfaction, especially when the new model has degraded compared to a prior version for a known use case (model update regression).We find that when pretrained LLM base models are updated, fine-tuned user-facing downstream task adapters experience negative flips – previously correct instances are now predicted incorrectly. We observe model update regression between different model versions on a diverse set of tasks and models, even when the downstream task training procedures remain identical. We argue for the importance of maintaining model update compatibility during updates, and present evaluation metrics designed specifically for generative tasks, while also being applicable to discriminative tasks. We propose a training strategy to minimize the extent of instance regression in model updates, involving training of a compatibility adapter that can enhance task fine-tuned language models. We show negative flips reduce by up to 40% e.g. when updating Llama 1 to Llama 2 with our proposed method.
Cognitive Bias in Decision-Making with LLMs
Jessica Maria Echterhoff
|
Yao Liu
|
Abeer Alessa
|
Julian McAuley
|
Zexue He
Findings of the Association for Computational Linguistics: EMNLP 2024
Large language models (LLMs) offer significant potential as tools to support an expanding range of decision-making tasks. Given their training on human (created) data, LLMs have been shown to inherit societal biases against protected groups, as well as be subject to bias functionally resembling cognitive bias. Human-like bias can impede fair and explainable decisions made with LLM assistance. Our work introduces BiasBuster, a framework designed to uncover, evaluate, and mitigate cognitive bias in LLMs, particularly in high-stakes decision-making tasks. Inspired by prior research in psychology and cognitive science, we develop a dataset containing 13,465 prompts to evaluate LLM decisions on different cognitive biases (e.g., prompt-induced, sequential, inherent). We test various bias mitigation strategies, while proposing a novel method utilizing LLMs to debias their own human-like cognitive bias within prompts. Our analysis provides a comprehensive picture of the presence and effects of cognitive bias across commercial and open-source models. We demonstrate that our selfhelp debiasing effectively mitigates model answers that display patterns akin to human cognitive bias without having to manually craft examples for each bias.
Search
Co-authors
- Fartash Faghri 1
- Raviteja Vemulapalli 1
- Ting-Yao Hu 1
- Chun-Liang Li 1
- Oncel Tuzel 1
- show all...