Jie Li
2023
Augmenters at SemEval-2023 Task 1: Enhancing CLIP in Handling Compositionality and Ambiguity for Zero-Shot Visual WSD through Prompt Augmentation and Text-To-Image Diffusion
Jie Li
|
Yow-Ting Shiue
|
Yong-Siang Shih
|
Jonas Geiping
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
This paper describes our zero-shot approachesfor the Visual Word Sense Disambiguation(VWSD) Task in English. Our preliminarystudy shows that the simple approach of match-ing candidate images with the phrase usingCLIP suffers from the many-to-many natureof image-text pairs. We find that the CLIP textencoder may have limited abilities in captur-ing the compositionality in natural language. Conversely, the descriptive focus of the phrasevaries from instance to instance. We addressthese issues in our two systems, Augment-CLIPand Stable Diffusion Sampling (SD Sampling).Augment-CLIP augments the text prompt bygenerating sentences that contain the contextphrase with the help of large language mod-els (LLMs). We further explore CLIP modelsin other languages, as the an ambiguous wordmay be translated into an unambiguous one inthe other language. SD Sampling uses text-to-image Stable Diffusion to generate multipleimages from the given phrase, increasing thelikelihood that a subset of images match theone that paired with the text.
2020
The University of Maryland’s Submissions to the WMT20 Chat Translation Task: Searching for More Data to Adapt Discourse-Aware Neural Machine Translation
Calvin Bao
|
Yow-Ting Shiue
|
Chujun Song
|
Jie Li
|
Marine Carpuat
Proceedings of the Fifth Conference on Machine Translation
This paper describes the University of Maryland’s submissions to the WMT20 Shared Task on Chat Translation. We focus on translating agent-side utterances from English to German. We started from an off-the-shelf BPE-based standard transformer model trained with WMT17 news and fine-tuned it with the provided in-domain training data. In addition, we augment the training set with its best matches in the WMT19 news dataset. Our primary submission uses a standard Transformer, while our contrastive submissions use multi-encoder Transformers to attend to previous utterances. Our primary submission achieves 56.7 BLEU on the agent side (en→de), outperforming a baseline system provided by the task organizers by more than 13 BLEU points. Moreover, according to an evaluation on a set of carefully-designed examples, the multi-encoder architecture is able to generate more coherent translations.
Search
Fix data
Co-authors
- Yow-Ting Shiue 2
- Calvin Bao 1
- Marine Carpuat 1
- Jonas Geiping 1
- Yong-Siang Shih 1
- show all...