Jiecao Chen
2022
Transforming Sequence Tagging Into A Seq2Seq Task
Karthik Raman
|
Iftekhar Naim
|
Jiecao Chen
|
Kazuma Hashimoto
|
Kiran Yalasangi
|
Krishna Srinivasan
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Pretrained, large, generative language models (LMs) have had great success in a wide range of sequence tagging and structured prediction tasks. Casting a sequence tagging task as a Seq2Seq one requires deciding the formats of the input and output sequences. However, we lack a principled understanding of the trade-offs associated with these formats (such as the effect on model accuracy, sequence length, multilingual generalization, hallucination). In this paper, we rigorously study different formats one could use for casting input text sentences and their output labels into the input and target (i.e., output) of a Seq2Seq model. Along the way, we introduce a new format, which we show to to be both simpler and more effective. Additionally the new format demonstrates significant gains in the multilingual settings – both zero-shot transfer learning and joint training. Lastly, we find that the new format is more robust and almost completely devoid of hallucination – an issue we find common in existing formats. With well over a 1000 experiments studying 14 different formats, over 7 diverse public benchmarks – including 3 multilingual datasets spanning 7 languages – we believe our findings provide a strong empirical basis in understanding how we should tackle sequence tagging tasks.
2020
DiPair: Fast and Accurate Distillation for Trillion-Scale Text Matching and Pair Modeling
Jiecao Chen
|
Liu Yang
|
Karthik Raman
|
Michael Bendersky
|
Jung-Jung Yeh
|
Yun Zhou
|
Marc Najork
|
Danyang Cai
|
Ehsan Emadzadeh
Findings of the Association for Computational Linguistics: EMNLP 2020
Pre-trained models like BERT ((Devlin et al., 2018) have dominated NLP / IR applications such as single sentence classification, text pair classification, and question answering. However, deploying these models in real systems is highly non-trivial due to their exorbitant computational costs. A common remedy to this is knowledge distillation (Hinton et al., 2015), leading to faster inference. However – as we show here – existing works are not optimized for dealing with pairs (or tuples) of texts. Consequently, they are either not scalable or demonstrate subpar performance. In this work, we propose DiPair — a novel framework for distilling fast and accurate models on text pair tasks. Coupled with an end-to-end training strategy, DiPair is both highly scalable and offers improved quality-speed tradeoffs. Empirical studies conducted on both academic and real-world e-commerce benchmarks demonstrate the efficacy of the proposed approach with speedups of over 350x and minimal quality drop relative to the cross-attention teacher BERT model.
Search
Fix data
Co-authors
- Karthik Raman 2
- Michael Bendersky 1
- Danyang Cai 1
- Ehsan Emadzadeh 1
- Kazuma Hashimoto 1
- show all...