Jihyung Lee


2020

pdf bib
POSTECH-ETRI’s Submission to the WMT2020 APE Shared Task: Automatic Post-Editing with Cross-lingual Language Model
Jihyung Lee | WonKee Lee | Jaehun Shin | Baikjin Jung | Young-Kil Kim | Jong-Hyeok Lee
Proceedings of the Fifth Conference on Machine Translation

This paper describes POSTECH-ETRI’s submission to WMT2020 for the shared task on automatic post-editing (APE) for 2 language pairs: English-German (En-De) and English-Chinese (En-Zh). We propose APE systems based on a cross-lingual language model, which jointly adopts translation language modeling (TLM) and masked language modeling (MLM) training objectives in the pre-training stage; the APE models then utilize jointly learned language representations between the source language and the target language. In addition, we created 19 million new sythetic triplets as additional training data for our final ensemble model. According to experimental results on the WMT2020 APE development data set, our models showed an improvement over the baseline by TER of -3.58 and a BLEU score of +5.3 for the En-De subtask; and TER of -5.29 and a BLEU score of +7.32 for the En-Zh subtask.

pdf bib
Noising Scheme for Data Augmentation in Automatic Post-Editing
WonKee Lee | Jaehun Shin | Baikjin Jung | Jihyung Lee | Jong-Hyeok Lee
Proceedings of the Fifth Conference on Machine Translation

This paper describes POSTECH’s submission to WMT20 for the shared task on Automatic Post-Editing (APE). Our focus is on increasing the quantity of available APE data to overcome the shortage of human-crafted training data. In our experiment, we implemented a noising module that simulates four types of post-editing errors, and we introduced this module into a Transformer-based multi-source APE model. Our noising module implants errors into texts on the target side of parallel corpora during the training phase to make synthetic MT outputs, increasing the entire number of training samples. We also generated additional training data using the parallel corpora and NMT model that were released for the Quality Estimation task, and we used these data to train our APE model. Experimental results on the WMT20 English-German APE data set show improvements over the baseline in terms of both the TER and BLEU scores: our primary submission achieved an improvement of -3.15 TER and +4.01 BLEU, and our contrastive submission achieved an improvement of -3.34 TER and +4.30 BLEU.