Jinchang Luo
2024
Retrieving, Rethinking and Revising: The Chain-of-Verification Can Improve Retrieval Augmented Generation
Bolei He
|
Nuo Chen
|
Xinran He
|
Lingyong Yan
|
Zhenkai Wei
|
Jinchang Luo
|
Zhen-Hua Ling
Findings of the Association for Computational Linguistics: EMNLP 2024
Recent Retrieval Augmented Generation (RAG) aims to enhance Large Language Models (LLMs) by incorporating extensive knowledge retrieved from external sources. However, such approach encounters some challenges: Firstly, the original queries may not be suitable for precise retrieval, resulting in erroneous contextual knowledge; Secondly, the language model can easily generate inconsistent answer with external references due to their knowledge boundary limitation. To address these issues, we propose the chain-of-verification (CoV-RAG) to enhance the external retrieval correctness and internal generation consistency. Specifically, we integrate the verification module into the RAG, engaging in scoring, judgment, and rewriting. To correct external retrieval errors, CoV-RAG retrieves new knowledge using a revised query. To correct internal generation errors, we unify QA and verification tasks with a Chain-of-Thought (CoT) reasoning during training. Our comprehensive experiments across various LLMs demonstrate the effectiveness and adaptability compared with other strong baselines. Especially, our CoV-RAG can significantly surpass the state-of-the-art baselines using different LLM backbones.
Search
Fix data
Co-authors
- Nuo Chen 1
- Bolei He 1
- Xinran He 1
- Zhen-Hua Ling 1
- Zhenkai Wei 1
- show all...