Jinghui Chen


2024

pdf bib
Jailbreak Open-Sourced Large Language Models via Enforced Decoding
Hangfan Zhang | Zhimeng Guo | Huaisheng Zhu | Bochuan Cao | Lu Lin | Jinyuan Jia | Jinghui Chen | Dinghao Wu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large Language Models (LLMs) have achieved unprecedented performance in Natural Language Generation (NLG) tasks. However, many existing studies have shown that they could be misused to generate undesired content. In response, before releasing LLMs for public access, model developers usually align those language models through Supervised Fine-Tuning (SFT) or Reinforcement Learning with Human Feedback (RLHF). Consequently, those aligned large language models refuse to generate undesired content when facing potentially harmful/unethical requests. A natural question is “could alignment really prevent those open-sourced large language models from being misused to generate undesired content?”. In this work, we provide a negative answer to this question. In particular, we show those open-sourced, aligned large language models could be easily misguided to generate undesired content without heavy computations or careful prompt designs. Our key idea is to directly manipulate the generation process of open-sourced LLMs to misguide it to generate undesired content including harmful or biased information and even private data. We evaluate our method on 4 open-sourced LLMs accessible publicly and our finding highlights the need for more advanced mitigation strategies for open-sourced LLMs.

pdf bib
Defending Against Alignment-Breaking Attacks via Robustly Aligned LLM
Bochuan Cao | Yuanpu Cao | Lu Lin | Jinghui Chen
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recently, Large Language Models (LLMs) have made significant advancements and are now widely used across various domains. Unfortunately, there has been a rising concern that LLMs can be misused to generate harmful or malicious content. Though a line of research has focused on aligning LLMs with human values and preventing them from producing inappropriate content, such alignments are usually vulnerable and can be bypassed by alignment-breaking attacks via adversarially optimized or handcrafted jailbreaking prompts. In this work, we introduce a Robustly Aligned LLM (RA-LLM) to defend against potential alignment-breaking attacks. RA-LLM can be directly constructed upon an existing aligned LLM with a robust alignment checking function, without requiring any expensive retraining or fine-tuning process of the original LLM. Furthermore, we also provide a theoretical analysis for RA-LLM to verify its effectiveness in defending against alignment-breaking attacks. Through real-world experiments on open-source large language models, we demonstrate that RA-LLM can successfully defend against both state-of-the-art adversarial prompts and popular handcrafted jailbreaking prompts by reducing their attack success rates from nearly 100% to around 10% or less.

pdf bib
FEDKIM: Adaptive Federated Knowledge Injection into Medical Foundation Models
Xiaochen Wang | Jiaqi Wang | Houping Xiao | Jinghui Chen | Fenglong Ma
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Foundation models have demonstrated remarkable capabilities in handling diverse modalities and tasks, outperforming conventional artificial intelligence (AI) approaches that are highly task-specific and modality-reliant. In the medical domain, however, the development of comprehensive foundation models is constrained by limited access to diverse modalities and stringent privacy regulations. To address these constraints, this study introduces a novel knowledge injection approach, FedKIM, designed to scale the medical foundation model within a federated learning framework. FedKIM leverages lightweight local models to extract healthcare knowledge from private data and integrates this knowledge into a centralized foundation model using a designed adaptive Multitask Multimodal Mixture Of Experts (M3OE) module. This method not only preserves privacy but also enhances the model’s ability to handle complex medical tasks involving multiple modalities. Our extensive experiments across twelve tasks in seven modalities demonstrate the effectiveness of FedKIM in various settings, highlighting its potential to scale medical foundation models without direct access to sensitive data. Source codes are available at https://github.com/XiaochenWang-PSU/FedKIM.

pdf bib
PromptFix: Few-shot Backdoor Removal via Adversarial Prompt Tuning
Tianrong Zhang | Zhaohan Xi | Ting Wang | Prasenjit Mitra | Jinghui Chen
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Pre-trained language models (PLMs) have attracted enormous attention over the past few years with their unparalleled performances. Meanwhile, the soaring cost to train PLMs as well as their amazing generalizability have jointly contributed to few-shot fine-tuning and prompting as the most popular training paradigms for natural language processing (NLP) models. Nevertheless, existing studies have shown that these NLP models can be backdoored such that model behavior is manipulated when trigger tokens are presented.In this paper, we propose PromptFix, a novel backdoor mitigation strategy for NLP models via adversarial prompt-tuning in few-shot settings.Unlike existing NLP backdoor removal methods, which rely on accurate trigger inversion and subsequent model fine-tuning, PromptFix keeps the model parameters intact and only utilizes two extra sets of soft tokens which approximate the trigger and counteract it respectively. The use of soft tokens and adversarial optimization eliminates the need to enumerate possible backdoor configurations and enables an adaptive balance between trigger finding and preservation of performance.Experiments with various backdoor attacks validate the effectiveness of the proposed method and the performances when domain shift is present further shows PromptFix’s applicability to models pretrained on unknown data source which is the common case in prompt tuning scenarios.

pdf bib
Stealthy and Persistent Unalignment on Large Language Models via Backdoor Injections
Yuanpu Cao | Bochuan Cao | Jinghui Chen
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Recent developments in Large Language Models (LLMs) have manifested significant advancements. To facilitate safeguards against malicious exploitation, a body of research has concentrated on aligning LLMs with human preferences and inhibiting their generation of inappropriate content. Unfortunately, such alignments are often vulnerable: fine-tuning with a minimal amount of harmful data can easily unalign the target LLM. While being effective, such fine-tuning-based unalignment approaches also have their own limitations: (1) non-stealthiness, after fine-tuning, safety audits or red-teaming can easily expose the potential weaknesses of the unaligned models, thereby precluding their release/use. (2) non-persistence, the unaligned LLMs can be easily repaired through re-alignment, i.e., fine-tuning again with aligned data points. In this work, we show that it is possible to conduct stealthy and persistent unalignment on large language models via backdoor injections. We also provide a novel understanding of the relationship between the backdoor persistence and the activation pattern and further provide guidelines for potential trigger design. Through extensive experiments, we demonstrate that our proposed stealthy and persistent unalignment can successfully pass the safety evaluation while maintaining strong persistence against re-alignment defense.