Joao Monteiro
2024
XC-Cache: Cross-Attending to Cached Context for Efficient LLM Inference
Joao Monteiro
|
Étienne Marcotte
|
Pierre-Andre Noel
|
Valentina Zantedeschi
|
David Vazquez
|
Nicolas Chapados
|
Christopher Pal
|
Perouz Taslakian
Findings of the Association for Computational Linguistics: EMNLP 2024
Prompts are often employed to condition decoder-only language model generation on reference information. Just-in-time processing of a context is inefficient due to the quadratic cost of self-attention operations, and caching is desirable. However, caching transformer states can easily require almost as much space as the model parameters. When the right context is not known in advance, caching the prompt can be challenging. This work addresses these limitations by introducing models that, inspired by the encoder-decoder architecture, use cross-attention to condition generation on reference text without the prompt. More precisely, we leverage pre-trained decoder-only models and only train a small number of added layers. We use Question-Answering (QA) as a testbed to evaluate the ability of our models to perform conditional generation and observe that they outperform prompt-based inference methods, are comparable to fine-tuned prompted LLMs, and drastically reduce the space footprint relative to standard KV caching by two orders of magnitude. Specifically, we introduced XC-Llama which converts a pre-trained Llama 2 into an encoder-decoder architecture by integrating cross-attention layers interleaved in between existing self-attention layers.
2020
On The Performance of Time-Pooling Strategies for End-to-End Spoken Language Identification
Joao Monteiro
|
Md Jahangir Alam
|
Tiago Falk
Proceedings of the Twelfth Language Resources and Evaluation Conference
Automatic speech processing applications often have to deal with the problem of aggregating local descriptors (i.e., representations of input speech data corresponding to specific portions across the time dimension) and turning them into a single fixed-dimension representation, known as global descriptor, on top of which downstream classification tasks can be performed. In this paper, we provide an empirical assessment of different time pooling strategies when used with state-of-the-art representation learning models. In particular, insights are provided as to when it is suitable to use simple statistics of local descriptors or when more sophisticated approaches are needed. Here, language identification is used as a case study and a database containing ten oriental languages under varying test conditions (short-duration test recordings, confusing languages, unseen languages) is used. Experiments are performed with classifiers trained on top of global descriptors to provide insights on open-set evaluation performance and show that appropriate selection of such pooling strategies yield embeddings able to outperform well-known benchmark systems as well as previously results based on attention only.
Search
Fix data
Co-authors
- Md Jahangir Alam 1
- Nicolas Chapados 1
- Tiago Falk 1
- Étienne Marcotte 1
- Pierre-Andre Noel 1
- show all...