A traditional claim in linguistics is that all human languages are equally expressive—able to convey the same wide range of meanings. Morphologically rich languages, such as Czech, rely on overt inflectional and derivational morphology to convey many semantic distinctions. Languages with comparatively limited morphology, such as English, should be able to accomplish the same using a combination of syntactic and contextual cues. We capitalize on this idea by training a tagger for English that uses syntactic features obtained by automatic parsing to recover complex morphological tags projected from Czech. The high accuracy of the resulting model provides quantitative confirmation of the underlying linguistic hypothesis of equal expressivity, and bodes well for future improvements in downstream HLT tasks including machine translation.
Many of the world’s languages contain an abundance of inflected forms for each lexeme. A critical task in processing such languages is predicting these inflected forms. We develop a novel statistical model for the problem, drawing on graphical modeling techniques and recent advances in deep learning. We derive a Metropolis-Hastings algorithm to jointly decode the model. Our Bayesian network draws inspiration from principal parts morphological analysis. We demonstrate improvements on 5 languages.
Structured, complete inflectional paradigm data exists for very few of the world’s languages, but is crucial to training morphological analysis tools. We present methods inspired by linguistic fieldwork for gathering inflectional paradigm data in a machine-readable, interoperable format from remotely-located speakers of any language. Informants are tasked with completing language-specific paradigm elicitation templates. Templates are constructed by linguists using grammatical reference materials to ensure completeness. Each cell in a template is associated with contextual prompts designed to help informants with varying levels of linguistic expertise (from professional translators to untrained native speakers) provide the desired inflected form. To facilitate downstream use in interoperable NLP/HLT applications, each cell is also associated with a language-independent machine-readable set of morphological tags from the UniMorph Schema. This data is useful for seeding morphological analysis and generation software, particularly when the data is representative of the range of surface morphological variation in the language. At present, we have obtained 792 lemmas and 25,056 inflected forms from 15 languages.
Wiktionary is a large-scale resource for cross-lingual lexical information with great potential utility for machine translation (MT) and many other NLP tasks, especially automatic morphological analysis and generation. However, it is designed primarily for human viewing rather than machine readability, and presents numerous challenges for generalized parsing and extraction due to a lack of standardized formatting and grammatical descriptor definitions. This paper describes a large-scale effort to automatically extract and standardize the data in Wiktionary and make it available for use by the NLP research community. The methodological innovations include a multidimensional table parsing algorithm, a cross-lexeme, token-frequency-based method of separating inflectional form data from grammatical descriptors, the normalization of grammatical descriptors to a unified annotation scheme that accounts for cross-linguistic diversity, and a verification and correction process that exploits within-language, cross-lexeme table format consistency to minimize human effort. The effort described here resulted in the extraction of a uniquely large normalized resource of nearly 1,000,000 inflectional paradigms across 350 languages. Evaluation shows that even though the data is extracted using a language-independent approach, it is comparable in quantity and quality to data extracted using hand-tuned, language-specific approaches.