Johnny Torres
2019
JTML at SemEval-2019 Task 6: Offensive Tweets Identification using Convolutional Neural Networks
Johnny Torres
|
Carmen Vaca
Proceedings of the 13th International Workshop on Semantic Evaluation
In this paper, we propose the use of a Convolutional Neural Network (CNN) to identify offensive tweets, as well as the type and target of the offense. We use an end-to-end model (i.e., no preprocessing) and fine-tune pre-trained embeddings (FastText) during training for learning words’ representation. We compare the proposed CNN model to a baseline model, such as Linear Regression, and several neural models. The results show that CNN outperforms other models, and stands as a simple but strong baseline in comparison to other systems submitted to the Shared Task.
2018
EmotionX-JTML: Detecting emotions with Attention
Johnny Torres
Proceedings of the Sixth International Workshop on Natural Language Processing for Social Media
This paper addresses the problem of automatic recognition of emotions in conversational text datasets for the EmotionX challenge. Emotion is a human characteristic expressed through several modalities (e.g., auditory, visual, tactile). Trying to detect emotions only from the text becomes a difficult task even for humans. This paper evaluates several neural architectures based on Attention Models, which allow extracting relevant parts of the context within a conversation to identify the emotion associated with each utterance. Empirical results in the validation datasets demonstrate the effectiveness of the approach compared to the reference models for some instances, and other cases show better results with simpler models.