JoongHoon Kim
2023
Which is better? Exploring Prompting Strategy For LLM-based Metrics
JoongHoon Kim
|
Sangmin Lee
|
Seung Hun Han
|
Saeran Park
|
Jiyoon Lee
|
Kiyoon Jeong
|
Pilsung Kang
Proceedings of the 4th Workshop on Evaluation and Comparison of NLP Systems
This paper describes the DSBA submissions to the Prompting Large Language Models as Explainable Metrics shared task, where systems were submitted to two tracks: small and large summarization tracks. With advanced Large Language Models (LLMs) such as GPT-4, evaluating the quality of Natural Language Generation (NLG) has become increasingly paramount. Traditional similarity-based metrics such as BLEU and ROUGE have shown to misalign with human evaluation and are ill-suited for open-ended generation tasks. To address this issue, we explore the potential capability of LLM-based metrics, especially leveraging open-source LLMs. In this study, wide range of prompts and prompting techniques are systematically analyzed with three approaches: prompting strategy, score aggregation, and explainability. Our research focuses on formulating effective prompt templates, determining the granularity of NLG quality scores and assessing the impact of in-context examples on LLM-based evaluation. Furthermore, three aggregation strategies are compared to identify the most reliable method for aggregating NLG quality scores. To examine explainability, we devise a strategy that generates rationales for the scores and analyzes the characteristics of the explanation produced by the open-source LLMs. Extensive experiments provide insights regarding evaluation capabilities of open-source LLMs and suggest effective prompting strategies.
Search
Fix data
Co-authors
- Seung Hun Han 1
- Kiyoon Jeong 1
- Pilsung Kang 1
- Sangmin Lee 1
- Jiyoon Lee 1
- show all...