Joris Vanvinckenroye
2022
Detecting Various Types of Noise for Neural Machine Translation
Christian Herold
|
Jan Rosendahl
|
Joris Vanvinckenroye
|
Hermann Ney
Findings of the Association for Computational Linguistics: ACL 2022
The filtering and/or selection of training data is one of the core aspects to be considered when building a strong machine translation system. In their influential work, Khayrallah and Koehn (2018) investigated the impact of different types of noise on the performance of machine translation systems. In the same year the WMT introduced a shared task on parallel corpus filtering, which went on to be repeated in the following years, and resulted in many different filtering approaches being proposed. In this work we aim to combine the recent achievements in data filtering with the original analysis of Khayrallah and Koehn (2018) and investigate whether state-of-the-art filtering systems are capable of removing all the suggested noise types. We observe that most of these types of noise can be detected with an accuracy of over 90% by modern filtering systems when operating in a well studied high resource setting. However, we also find that when confronted with more refined noise categories or when working with a less common language pair, the performance of the filtering systems is far from optimal, showing that there is still room for improvement in this area of research.
2021
Data Filtering using Cross-Lingual Word Embeddings
Christian Herold
|
Jan Rosendahl
|
Joris Vanvinckenroye
|
Hermann Ney
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
Data filtering for machine translation (MT) describes the task of selecting a subset of a given, possibly noisy corpus with the aim to maximize the performance of an MT system trained on this selected data. Over the years, many different filtering approaches have been proposed. However, varying task definitions and data conditions make it difficult to draw a meaningful comparison. In the present work, we aim for a more systematic approach to the task at hand. First, we analyze the performance of language identification, a tool commonly used for data filtering in the MT community and identify specific weaknesses. Based on our findings, we then propose several novel methods for data filtering, based on cross-lingual word embeddings. We compare our approaches to one of the winning methods from the WMT 2018 shared task on parallel corpus filtering on three real-life, high resource MT tasks. We find that said method, which was performing very strong in the WMT shared task, does not perform well within our more realistic task conditions. While we find that our approaches come out at the top on all three tasks, different variants perform best on different tasks. Further experiments on the WMT 2020 shared task for parallel corpus filtering show that our methods achieve comparable results to the strongest submissions of this campaign.