Juliette Millet
2022
Do self-supervised speech models develop human-like perception biases?
Juliette Millet
|
Ewan Dunbar
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Self-supervised models for speech processing form representational spaces without using any external labels. Increasingly, they appear to be a feasible way of at least partially eliminating costly manual annotations, a problem of particular concern for low-resource languages. But what kind of representational spaces do these models construct?Human perception specializes to the sounds of listeners’ native languages. Does the same thing happen in self-supervised models? We examine the representational spaces of three kinds of state of the art self-supervised models: wav2vec, HuBERT and contrastive predictive coding (CPC), and compare them with the perceptual spaces of French-speaking and English-speaking human listeners, both globally and taking account of the behavioural differences between the two language groups. We show that the CPC model shows a small native language effect, but that wav2vec and HuBERT seem to develop a universal speech perception space which is not language specific. A comparison against the predictions of supervised phone recognisers suggests that all three self-supervised models capture relatively fine-grained perceptual phenomena, while supervised models are better at capturing coarser, phone-level effects, and effects of listeners’ native language, on perception.
2021
Predicting non-native speech perception using the Perceptual Assimilation Model and state-of-the-art acoustic models
Juliette Millet
|
Ioana Chitoran
|
Ewan Dunbar
Proceedings of the 25th Conference on Computational Natural Language Learning
Our native language influences the way we perceive speech sounds, affecting our ability to discriminate non-native sounds. We compare two ideas about the influence of the native language on speech perception: the Perceptual Assimilation Model, which appeals to a mental classification of sounds into native phoneme categories, versus the idea that rich, fine-grained phonetic representations tuned to the statistics of the native language, are sufficient. We operationalise this idea using representations from two state-of-the-art speech models, a Dirichlet process Gaussian mixture model and the more recent wav2vec 2.0 model. We present a new, open dataset of French- and English-speaking participants’ speech perception behaviour for 61 vowel sounds from six languages. We show that phoneme assimilation is a better predictor than fine-grained phonetic modelling, both for the discrimination behaviour as a whole, and for predicting differences in discriminability associated with differences in native language background. We also show that wav2vec 2.0, while not good at capturing the effects of native language on speech perception, is complementary to information about native phoneme assimilation, and provides a good model of low-level phonetic representations, supporting the idea that both categorical and fine-grained perception are used during speech perception.