Microblog content (e.g., Tweets) is noisy due to its informal use of language and its lack of contextual information within each post. To tackle these challenges, state-of-the-art microblog classification models rely on pre-training language models (LMs). However, pre-training dedicated LMs is resource-intensive and not suitable for small labs. Supervised contrastive learning (SCL) has shown its effectiveness with small, available resources. In this work, we examine the effectiveness of fine-tuning transformer-based language models, regularized with a SCL loss for English microblog classification. Despite its simplicity, the evaluation on two English microblog classification benchmarks (TweetEval and Tweet Topic Classification) shows an improvement over baseline models. The result shows that, across all subtasks, our proposed method has a performance gain of up to 11.9 percentage points. All our models are open source.
Identifying events from text has a long past in narrative analysis, but a short history in Natural Language Processing (NLP). In this position paper, a question is asked: given the telling of a sequence of real-world events by a news narrator, what do NLP event extraction models capture, and what do they miss? Insights from critical discourse analysis (CDA) and from a series of movements in literary criticism motivate us to model the narrated logic in news narratives.As a result, a computational framework is proposed to model the function of news narration, which shapes the narrated world, consumed by news narratees. As a simplification, we represent the causal logic between events depicted in the narrated world.
This paper describes the results of the Knowledge Graph Question Answering (KGQA) shared task that was co-located with the TextGraphs 2024 workshop. In this task, given a textual question and a list of entities with the corresponding KG subgraphs, the participating system should choose the entity that correctly answers the question. Our competition attracted thirty teams, four of which outperformed our strong ChatGPT-based zero-shot baseline. In this paper, we overview the participating systems and analyze their performance according to a large-scale automatic evaluation. To the best of our knowledge, this is the first competition aimed at the KGQA problem using the interaction between large language models (LLMs) and knowledge graphs.