Junghwa Lee
2023
VARCO-MT: NCSOFT’s WMT’23 Terminology Shared Task Submission
Geon Woo Park
|
Junghwa Lee
|
Meiying Ren
|
Allison Shindell
|
Yeonsoo Lee
Proceedings of the Eighth Conference on Machine Translation
A lack of consistency in terminology translation undermines quality of translation from even the best performing neural machine translation (NMT) models, especially in narrow domains like literature, medicine, and video game jargon. Dictionaries containing terminologies and their translations are often used to improve consistency but are difficult to construct and incorporate. We accompany our submissions to the WMT ‘23 Terminology Shared Task with a description of our experimental setup and procedure where we propose a framework of terminology-aware machine translation. Our framework comprises of an automatic terminology extraction process that constructs terminology-aware machine translation data in low-supervision settings and two model architectures with terminology constraints. Our models outperform baseline models by 21.51%p and 19.36%p in terminology recall respectively on the Chinese to English WMT’23 Terminology Shared Task test data.
2022
HaRiM+: Evaluating Summary Quality with Hallucination Risk
Seonil (Simon) Son
|
Junsoo Park
|
Jeong-in Hwang
|
Junghwa Lee
|
Hyungjong Noh
|
Yeonsoo Lee
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
One of the challenges of developing a summarization model arises from the difficulty in measuring the factual inconsistency of the generated text. In this study, we reinterpret the decoder overconfidence-regularizing objective suggested in (Miao et al., 2021) as a hallucination risk measurement to better estimate the quality of generated summaries. We propose a reference-free metric, HaRiM+, which only requires an off-the-shelf summarization model to compute the hallucination risk based on token likelihoods. Deploying it requires no additional training of models or ad-hoc modules, which usually need alignment to human judgments. For summary-quality estimation, HaRiM+ records state-of-the-art correlation to human judgment on three summary-quality annotation sets: FRANK, QAGS, and SummEval. We hope that our work, which merits the use of summarization models, facilitates the progress of both automated evaluation and generation of summary.
Search
Fix data
Co-authors
- Yeonsoo Lee 2
- Jeong-in Hwang 1
- Hyungjong Noh 1
- Junsoo Park 1
- Geon Woo Park 1
- show all...