Jungwei Fan


2020

pdf bib
How You Ask Matters: The Effect of Paraphrastic Questions to BERT Performance on a Clinical SQuAD Dataset
Sungrim (Riea) Moon | Jungwei Fan
Proceedings of the 3rd Clinical Natural Language Processing Workshop

Reading comprehension style question-answering (QA) based on patient-specific documents represents a growing area in clinical NLP with plentiful applications. Bidirectional Encoder Representations from Transformers (BERT) and its derivatives lead the state-of-the-art accuracy on the task, but most evaluation has treated the data as a pre-mixture without systematically looking into the potential effect of imperfect train/test questions. The current study seeks to address this gap by experimenting with full versus partial train/test data consisting of paraphrastic questions. Our key findings include 1) training with all pooled question variants yielded best accuracy, 2) the accuracy varied widely, from 0.74 to 0.80, when trained with each single question variant, and 3) questions of similar lexical/syntactic structure tended to induce identical answers. The results suggest that how you ask questions matters in BERT-based QA, especially at the training stage.

2019

pdf bib
Annotating and Characterizing Clinical Sentences with Explicit Why-QA Cues
Jungwei Fan
Proceedings of the 2nd Clinical Natural Language Processing Workshop

Many clinical information needs can be stated as why-questions. The answers to them represent important clinical reasoning and justification. Clinical notes are a rich source for such why-question answering (why-QA). However, there are few dedicated corpora, and little is known about the characteristics of clinical why-QA narratives. To address this gap, the study performed manual annotation of 277 sentences containing explicit why-QA cues and summarized their quantitative and qualitative properties. The contributions are: 1) sharing a seed corpus that can be used for various QA-related training purposes, 2) adding to our knowledge about the diversity and distribution of clinical why-QA contents.