Junlin Yang


2019

pdf bib
Look Again at the Syntax: Relational Graph Convolutional Network for Gendered Ambiguous Pronoun Resolution
Yinchuan Xu | Junlin Yang
Proceedings of the First Workshop on Gender Bias in Natural Language Processing

Gender bias has been found in existing coreference resolvers. In order to eliminate gender bias, a gender-balanced dataset Gendered Ambiguous Pronouns (GAP) has been released and the best baseline model achieves only 66.9% F1. Bidirectional Encoder Representations from Transformers (BERT) has broken several NLP task records and can be used on GAP dataset. However, fine-tune BERT on a specific task is computationally expensive. In this paper, we propose an end-to-end resolver by combining pre-trained BERT with Relational Graph Convolutional Network (R-GCN). R-GCN is used for digesting structural syntactic information and learning better task-specific embeddings. Empirical results demonstrate that, under explicit syntactic supervision and without the need to fine tune BERT, R-GCN’s embeddings outperform the original BERT embeddings on the coreference task. Our work significantly improves the snippet-context baseline F1 score on GAP dataset from 66.9% to 80.3%. We participated in the Gender Bias for Natural Language Processing 2019 shared task, and our codes are available online.
Search
Co-authors
Venues