Junqi Zhang
2024
Dual-Phase Accelerated Prompt Optimization
Muchen Yang
|
Moxin Li
|
Yongle Li
|
Zijun Chen
|
Chongming Gao
|
Junqi Zhang
|
Yangyang Li
|
Fuli Feng
Findings of the Association for Computational Linguistics: EMNLP 2024
Gradient-free prompt optimization methods have made significant strides in enhancing the performance of closed-source Large Language Model (LLMs) across a wide range of tasks. However, existing approaches make light of the importance of high-quality prompt initialization and the identification of effective optimization directions, thus resulting in substantial optimization steps to obtain satisfactory performance. In this light, we aim to accelerate prompt optimization process to tackle the challenge of low convergence rate. We propose a dual-phase approach which starts with generating high-quality initial prompts by adopting a well-designed meta-instruction to delve into task-specific information, and iteratively optimize the prompts at the sentence level, leveraging previous tuning experience to expand prompt candidates and accept effective ones. Extensive experiments on eight datasets demonstrate the effectiveness of our proposed method, achieving a consistent accuracy gain over baselines with less than five optimization steps.
2020
Demographics Should Not Be the Reason of Toxicity: Mitigating Discrimination in Text Classifications with Instance Weighting
Guanhua Zhang
|
Bing Bai
|
Junqi Zhang
|
Kun Bai
|
Conghui Zhu
|
Tiejun Zhao
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
With the recent proliferation of the use of text classifications, researchers have found that there are certain unintended biases in text classification datasets. For example, texts containing some demographic identity-terms (e.g., “gay”, “black”) are more likely to be abusive in existing abusive language detection datasets. As a result, models trained with these datasets may consider sentences like “She makes me happy to be gay” as abusive simply because of the word “gay.” In this paper, we formalize the unintended biases in text classification datasets as a kind of selection bias from the non-discrimination distribution to the discrimination distribution. Based on this formalization, we further propose a model-agnostic debiasing training framework by recovering the non-discrimination distribution using instance weighting, which does not require any extra resources or annotations apart from a pre-defined set of demographic identity-terms. Experiments demonstrate that our method can effectively alleviate the impacts of the unintended biases without significantly hurting models’ generalization ability.
Search
Co-authors
- Muchen Yang 1
- Moxin Li 1
- Yongle Li 1
- Zijun Chen 1
- Chongming Gao 1
- show all...