Junxin Liu


2019

pdf bib
Hierarchical User and Item Representation with Three-Tier Attention for Recommendation
Chuhan Wu | Fangzhao Wu | Junxin Liu | Yongfeng Huang
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Utilizing reviews to learn user and item representations is useful for recommender systems. Existing methods usually merge all reviews from the same user or for the same item into a long document. However, different reviews, sentences and even words usually have different informativeness for modeling users and items. In this paper, we propose a hierarchical user and item representation model with three-tier attention to learn user and item representations from reviews for recommendation. Our model contains three major components, i.e., a sentence encoder to learn sentence representations from words, a review encoder to learn review representations from sentences, and a user/item encoder to learn user/item representations from reviews. In addition, we incorporate a three-tier attention network in our model to select important words, sentences and reviews. Besides, we combine the user and item representations learned from the reviews with user and item embeddings based on IDs as the final representations to capture the latent factors of individual users and items. Extensive experiments on four benchmark datasets validate the effectiveness of our approach.

2018

pdf bib
Detecting Tweets Mentioning Drug Name and Adverse Drug Reaction with Hierarchical Tweet Representation and Multi-Head Self-Attention
Chuhan Wu | Fangzhao Wu | Junxin Liu | Sixing Wu | Yongfeng Huang | Xing Xie
Proceedings of the 2018 EMNLP Workshop SMM4H: The 3rd Social Media Mining for Health Applications Workshop & Shared Task

This paper describes our system for the first and third shared tasks of the third Social Media Mining for Health Applications (SMM4H) workshop, which aims to detect the tweets mentioning drug names and adverse drug reactions. In our system we propose a neural approach with hierarchical tweet representation and multi-head self-attention (HTR-MSA) for both tasks. Our system achieved the first place in both the first and third shared tasks of SMM4H with an F-score of 91.83% and 52.20% respectively.

pdf bib
THU_NGN at SemEval-2018 Task 3: Tweet Irony Detection with Densely connected LSTM and Multi-task Learning
Chuhan Wu | Fangzhao Wu | Sixing Wu | Junxin Liu | Zhigang Yuan | Yongfeng Huang
Proceedings of the 12th International Workshop on Semantic Evaluation

Detecting irony is an important task to mine fine-grained information from social web messages. Therefore, the Semeval-2018 task 3 is aimed to detect the ironic tweets (subtask A) and their ironic types (subtask B). In order to address this task, we propose a system based on a densely connected LSTM network with multi-task learning strategy. In our dense LSTM model, each layer will take all outputs from previous layers as input. The last LSTM layer will output the hidden representations of texts, and they will be used in three classification task. In addition, we incorporate several types of features to improve the model performance. Our model achieved an F-score of 70.54 (ranked 2/43) in the subtask A and 49.47 (ranked 3/29) in the subtask B. The experimental results validate the effectiveness of our system.

pdf bib
THU_NGN at SemEval-2018 Task 1: Fine-grained Tweet Sentiment Intensity Analysis with Attention CNN-LSTM
Chuhan Wu | Fangzhao Wu | Junxin Liu | Zhigang Yuan | Sixing Wu | Yongfeng Huang
Proceedings of the 12th International Workshop on Semantic Evaluation

Traditional sentiment analysis approaches mainly focus on classifying the sentiment polarities or emotion categories of texts. However, they can’t exploit the sentiment intensity information. Therefore, the SemEval-2018 Task 1 is aimed to automatically determine the intensity of emotions or sentiment of tweets to mine fine-grained sentiment information. In order to address this task, we propose a system based on an attention CNN-LSTM model. In our model, LSTM is used to extract the long-term contextual information from texts. We apply attention techniques to selecting this information. A CNN layer with different size of kernels is used to extract local features. The dense layers take the pooled CNN feature maps and predict the intensity scores. Our system reaches average Pearson correlation score of 0.722 (ranked 12/48) in emotion intensity regression task, and 0.810 in valence regression task (ranked 15/38). It indicates that our system can be further extended.

pdf bib
THU_NGN at SemEval-2018 Task 2: Residual CNN-LSTM Network with Attention for English Emoji Prediction
Chuhan Wu | Fangzhao Wu | Sixing Wu | Zhigang Yuan | Junxin Liu | Yongfeng Huang
Proceedings of the 12th International Workshop on Semantic Evaluation

Emojis are widely used by social media and social network users when posting their messages. It is important to study the relationships between messages and emojis. Thus, in SemEval-2018 Task 2 an interesting and challenging task is proposed, i.e., predicting which emojis are evoked by text-based tweets. We propose a residual CNN-LSTM with attention (RCLA) model for this task. Our model combines CNN and LSTM layers to capture both local and long-range contextual information for tweet representation. In addition, attention mechanism is used to select important components. Besides, residual connection is applied to CNN layers to facilitate the training of neural networks. We also incorporated additional features such as POS tags and sentiment features extracted from lexicons. Our model achieved 30.25% macro-averaged F-score in the first subtask (i.e., emoji prediction in English), ranking 7th out of 48 participants.