Jyoti Prakash Singh
2021
Offensive language identification in Dravidian code mixed social media text
Sunil Saumya
|
Abhinav Kumar
|
Jyoti Prakash Singh
Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages
Hate speech and offensive language recognition in social media platforms have been an active field of research over recent years. In non-native English spoken countries, social media texts are mostly in code mixed or script mixed/switched form. The current study presents extensive experiments using multiple machine learning, deep learning, and transfer learning models to detect offensive content on Twitter. The data set used for this study are in Tanglish (Tamil and English), Manglish (Malayalam and English) code-mixed, and Malayalam script-mixed. The experimental results showed that 1 to 6-gram character TF-IDF features are better for the said task. The best performing models were naive bayes, logistic regression, and vanilla neural network for the dataset Tamil code-mix, Malayalam code-mixed, and Malayalam script-mixed, respectively instead of more popular transfer learning models such as BERT and ULMFiT and hybrid deep models.
2020
AI_ML_NIT_Patna @ TRAC - 2: Deep Learning Approach for Multi-lingual Aggression Identification
Kirti Kumari
|
Jyoti Prakash Singh
Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying
This paper describes the details of developed models and results of team AI_ML_NIT_Patna for the shared task of TRAC - 2. The main objective of the said task is to identify the level of aggression and whether the comment is gendered based or not. The aggression level of each comment can be marked as either Overtly aggressive or Covertly aggressive or Non-aggressive. We have proposed two deep learning systems: Convolutional Neural Network and Long Short Term Memory with two different input text representations, FastText and One-hot embeddings. We have found that the LSTM model with FastText embedding is performing better than other models for Hindi and Bangla datasets but for the English dataset, the CNN model with FastText embedding has performed better. We have also found that the performances of One-hot embedding and pre-trained FastText embedding are comparable. Our system got 11th and 10th positions for English Sub-task A and Sub-task B, respectively, 8th and 7th positions, respectively for Hindi Sub-task A and Sub-task B and 7th and 6th positions for Bangla Sub-task A and Sub-task B, respectively among the total submitted systems.
Search