Kathryn Ricci
2023
Multi-CLS BERT: An Efficient Alternative to Traditional Ensembling
Haw-Shiuan Chang
|
Ruei-Yao Sun
|
Kathryn Ricci
|
Andrew McCallum
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Ensembling BERT models often significantly improves accuracy, but at the cost of significantly more computation and memory footprint. In this work, we propose Multi-CLS BERT, a novel ensembling method for CLS-based prediction tasks that is almost as efficient as a single BERT model. Multi-CLS BERT uses multiple CLS tokens with a parameterization and objective that encourages their diversity. Thus instead of fine-tuning each BERT model in an ensemble (and running them all at test time), we need only fine-tune our single Multi-CLS BERT model (and run the one model at test time, ensembling just the multiple final CLS embeddings). To test its effectiveness, we build Multi-CLS BERT on top of a state-of-the-art pretraining method for BERT (Aroca-Ouellette and Rudzicz, 2020). In experiments on GLUE and SuperGLUE we show that our Multi-CLS BERT reliably improves both overall accuracy and confidence estimation. When only 100 training samples are available in GLUE, the Multi-CLS BERT_Base model can even outperform the corresponding BERT_Large model. We analyze the behavior of our Multi-CLS BERT, showing that it has many of the same characteristics and behavior as a typical BERT 5-way ensemble, but with nearly 4-times less computation and memory.
2022
Unsupervised Partial Sentence Matching for Cited Text Identification
Kathryn Ricci
|
Haw-Shiuan Chang
|
Purujit Goyal
|
Andrew McCallum
Proceedings of the Third Workshop on Scholarly Document Processing
Given a citation in the body of a research paper, cited text identification aims to find the sentences in the cited paper that are most relevant to the citing sentence. The task is fundamentally one of sentence matching, where affinity is often assessed by a cosine similarity between sentence embeddings. However, (a) sentences may not be well-represented by a single embedding because they contain multiple distinct semantic aspects, and (b) good matches may not require a strong match in all aspects. To overcome these limitations, we propose a simple and efficient unsupervised method for cited text identification that adapts an asymmetric similarity measure to allow partial matches of multiple aspects in both sentences. On the CL-SciSumm dataset we find that our method outperforms a baseline symmetric approach, and, surprisingly, also outperforms all supervised and unsupervised systems submitted to past editions of CL-SciSumm Shared Task 1a.