We propose a new type of representation learning method that models words, phrases and sentences seamlessly. Our method does not depend on word segmentation and any human-annotated resources (e.g., word dictionaries), yet it is very effective for noisy corpora written in unsegmented languages such as Chinese and Japanese. The main idea of our method is to ignore word boundaries completely (i.e., segmentation-free), and construct representations for all character n-grams in a raw corpus with embeddings of compositional sub-n-grams. Although the idea is simple, our experiments on various benchmarks and real-world datasets show the efficacy of our proposal.
We propose a new word embedding method called word-like character n-gram embedding, which learns distributed representations of words by embedding word-like character n-grams. Our method is an extension of recently proposed segmentation-free word embedding, which directly embeds frequent character n-grams from a raw corpus. However, its n-gram vocabulary tends to contain too many non-word n-grams. We solved this problem by introducing an idea of expected word frequency. Compared to the previously proposed methods, our method can embed more words, along with the words that are not included in a given basic word dictionary. Since our method does not rely on word segmentation with rich word dictionaries, it is especially effective when the text in the corpus is in unsegmented language and contains many neologisms and informal words (e.g., Chinese SNS dataset). Our experimental results on Sina Weibo (a Chinese microblog service) and Twitter show that the proposed method can embed more words and improve the performance of downstream tasks.
In this paper, we propose a novel method for multimodal word embedding, which exploit a generalized framework of multi-view spectral graph embedding to take into account visual appearances or scenes denoted by words in a corpus. We evaluated our method through word similarity tasks and a concept-to-image search task, having found that it provides word representations that reflect visual information, while somewhat trading-off the performance on the word similarity tasks. Moreover, we demonstrate that our method captures multimodal linguistic regularities, which enable recovering relational similarities between words and images by vector arithmetics.