Kazuma Onishi


2025

pdf bib
IRR: Image Review Ranking Framework for Evaluating Vision-Language Models
Kazuki Hayashi | Kazuma Onishi | Toma Suzuki | Yusuke Ide | Seiji Gobara | Shigeki Saito | Yusuke Sakai | Hidetaka Kamigaito | Katsuhiko Hayashi | Taro Watanabe
Proceedings of the 31st International Conference on Computational Linguistics

Large-scale Vision-Language Models (LVLMs) process both images and text, excelling in multimodal tasks such as image captioning and description generation. However, while these models excel at generating factual content, their ability to generate and evaluate texts reflecting perspectives on the same image, depending on the context, has not been sufficiently explored. To address this, we propose IRR: Image Review Rank, a novel evaluation framework designed to assess critic review texts from multiple perspectives. IRR evaluates LVLMs by measuring how closely their judgments align with human interpretations. We validate it using a dataset of images from 15 categories, each with five critic review texts and annotated rankings in both English and Japanese, totaling over 2,000 data instances. Our results indicate that, although LVLMs exhibited consistent performance across languages, their correlation with human annotations was insufficient, highlighting the need for further advancements. These findings highlight the limitations of current evaluation methods and the need for approaches that better capture human reasoning in Vision & Language tasks.

2024

pdf bib
Multi-label Learning with Random Circular Vectors
Ken Nishida | Kojiro Machi | Kazuma Onishi | Katsuhiko Hayashi | Hidetaka Kamigaito
Proceedings of the 9th Workshop on Representation Learning for NLP (RepL4NLP-2024)

The extreme multi-label classification (XMC) task involves learning a classifier that can predict from a large label set the most relevant subset of labels for a data instance. While deep neural networks (DNNs) have demonstrated remarkable success in XMC problems, the task is still challenging because it must deal with a large number of output labels, which make the DNN training computationally expensive. This paper addresses the issue by exploring the use of random circular vectors, where each vector component is represented as a complex amplitude. In our framework, we can develop an output layer and loss function of DNNs for XMC by representing the final output layer as a fully connected layer that directly predicts a low-dimensional circular vector encoding a set of labels for a data instance. We conducted experiments on synthetic datasets to verify that circular vectors have better label encoding capacity and retrieval ability than normal real-valued vectors. Then, we conducted experiments on actual XMC datasets and found that these appealing properties of circular vectors contribute to significant improvements in task performance compared with a previous model using random real-valued vectors, while reducing the size of the output layers by up to 99%.