Kevin Zhu


2025

pdf bib
Pragmatic Metacognitive Prompting Improves LLM Performance on Sarcasm Detection
Joshua Lee | Wyatt Fong | Alexander Le | Sur Shah | Kevin Han | Kevin Zhu
Proceedings of the 1st Workshop on Computational Humor (CHum)

Sarcasm detection is a significant challenge in sentiment analysis due to the nuanced and context-dependent nature of verbiage. We introduce Pragmatic Metacognitive Prompting (PMP) to improve the performance of Large Language Models (LLMs) in sarcasm detection, which leverages principles from pragmatics and reflection helping LLMs interpret implied meanings, consider contextual cues, and reflect on discrepancies to identify sarcasm. Using state-of-the-art LLMs such as LLaMA-3-8B, GPT-4o, and Claude 3.5 Sonnet, PMP achieves state-of-the-art performance on GPT-4o on MUStARD and SemEval2018. This study demonstrates that integrating pragmatic reasoning and metacognitive strategies into prompting significantly enhances LLMs’ ability to detect sarcasm, offering a promising direction for future research in sentiment analysis.

pdf bib
Improving LLM Abilities in Idiomatic Translation
Sundesh Donthi | Maximilian Spencer | Om B. Patel | Joon Young Doh | Eid Rodan | Kevin Zhu | Sean O’Brien
Proceedings of the First Workshop on Language Models for Low-Resource Languages

Translating idiomatic expressions remains a challenge for large language models (LLMs), as they often produce literal, semantically incorrect translations—for instance, directly converting “break a leg” into a nonsensical phrase in the target language. While external resources like IdiomKB can supply the figurative meaning and thus yield semantically accurate translations, this approach does not preserve the cultural and stylistic nuances that make idioms so distinctive. Our study focuses on idiomatic translations across multiple languages, including Chinese (ZH), Urdu (UR), and Hindi (HI), with clearly defined abbreviations for each. We propose two methods for improving idiomatic translation fidelity: a Semantic Idiom Alignment (SIA) approach that uses pre-trained sentence embeddings to identify target-language idioms, and a Language-Model-based Idiom Alignment (LIA) approach that prompts an LLM to suggest appropriate idiom counterparts. Human evaluations across multiple language pairs show that SIA better preserves idiomatic style. To support this work, we introduce idiom datasets in low-resource languages (Urdu and Hindi). Our results indicate that aligning idioms at the semantic level can improve cross-lingual style preservation and cultural authenticity.

2024

pdf bib
Question-Analysis Prompting Improves LLM Performance in Reasoning Tasks
Dharunish Yugeswardeenoo | Kevin Zhu | Sean O’Brien
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)

Although LLMs have the potential to transform many fields, they still underperform humans in reasoning tasks. Existing methods induce the model to produce step-by-step calculations, but this research explores the question: Does making the LLM analyze the question improve its performance? We propose a novel prompting strategy called Question Analysis Prompting (QAP), in which the model is prompted to explain the question in ’n’ words before solving. The value of ’n’ influences the length of response generated by the model. QAP is evaluated on GPT-3.5 Turbo and GPT-4 Turbo on arithmetic datasets GSM8K, AQuA, and SAT and commonsense dataset StrategyQA. QAP is compared with other state-of-the-art prompts including chain-of-thought (CoT), Plan and Solve Prompting (PS+) and Take A Deep Breath (TADB). QAP outperforms all state-of-the-art prompts on AQuA and SAT datasets on both GPT-3.5 and GPT-4. QAP consistently ranks among the top-2 prompts on 75% of the tests. A key factor of QAP performance can be attributed to response length, where detailed responses are beneficial when answering harder questions, but can negatively affect easy questions.

pdf bib
AAVENUE: Detecting LLM Biases on NLU Tasks in AAVE via a Novel Benchmark
Abhay Gupta | Ece Yurtseven | Philip Meng | Kevin Zhu
Proceedings of the Third Workshop on NLP for Positive Impact

Detecting biases in natural language understanding (NLU) for African American Vernacular English (AAVE) is crucial to developing inclusive natural language processing (NLP) systems. To address dialect-induced performance discrepancies, we introduce AAVENUE (AAVE Natural Language Understanding Evaluation), a benchmark for evaluating large language model (LLM) performance on NLU tasks in AAVE and Standard American English (SAE). AAVENUE builds upon and extends existing benchmarks like VALUE, replacing deterministic syntactic and morphological transformations with a more flexible methodology leveraging LLM-based translation with few-shot prompting, improving performance across our evaluation metrics when translating key tasks from the GLUE and SuperGLUE benchmarks. We compare AAVENUE and VALUE translations using five popular LLMs and a comprehensive set of metrics including fluency, BARTScore, quality, coherence, and understandability. Additionally, we recruit fluent AAVE speakers to validate our translations for authenticity. Our evaluations reveal that LLMs consistently perform better on SAE tasks than AAVE-translated versions, underscoring inherent biases and highlighting the need for more inclusive NLP models.

pdf bib
DiversityMedQA: A Benchmark for Assessing Demographic Biases in Medical Diagnosis using Large Language Models
Rajat Rawat | Hudson McBride | Rajarshi Ghosh | Dhiyaan Nirmal | Jong Moon | Dhruv Alamuri | Sean O'Brien | Kevin Zhu
Proceedings of the Third Workshop on NLP for Positive Impact

As large language models (LLMs) gain traction in healthcare, concerns about their susceptibility to demographic biases are growing. We introduce DiversityMedQA, a novel benchmark designed to assess LLM responses to medical queries across diverse patient demographics, such as gender and ethnicity. By perturbing questions from the MedQA dataset, which comprises of medical board exam questions, we created a benchmark that captures the nuanced differences in medical diagnosis across varying patient profiles. To ensure that our perturbations did not alter the clinical outcomes, we implemented a filtering strategy to validate each perturbation, so that any performance discrepancies would be indicative of bias. Our findings reveal notable discrepancies in model performance when tested against these demographic variations. By releasing DiversityMedQA, we provide a resource for evaluating and mitigating demographic bias in LLM medical diagnoses.