Khalid N. Elmadani
2024
Neural Machine Translation between Low-Resource Languages with Synthetic Pivoting
Khalid N. Elmadani
|
Jan Buys
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Training neural models for translating between low-resource languages is challenging due to the scarcity of direct parallel data between such languages. Pivot-based neural machine translation (NMT) systems overcome data scarcity by including a high-resource pivot language in the process of translating between low-resource languages. We propose synthetic pivoting, a novel approach to pivot-based translation in which the pivot sentences are generated synthetically from both the source and target languages. Synthetic pivot sentences are generated through sequence-level knowledge distillation, with the aim of changing the structure of pivot sentences to be closer to that of the source or target languages, thereby reducing pivot translation complexity. We incorporate synthetic pivoting into two paradigms for pivoting: cascading and direct translation using synthetic source and target sentences. We find that the performance of pivot-based systems highly depends on the quality of the NMT model used for sentence regeneration. Furthermore, training back-translation models on these sentences can make the models more robust to input-side noise. The results show that synthetic data generation improves pivot-based systems translating between low-resource Southern African languages by up to 5.6 BLEU points after fine-tuning.
2022
University of Cape Town’s WMT22 System: Multilingual Machine Translation for Southern African Languages
Khalid N. Elmadani
|
Francois Meyer
|
Jan Buys
Proceedings of the Seventh Conference on Machine Translation (WMT)
The paper describes the University of Cape Town’s submission to the constrained track of the WMT22 Shared Task: Large-Scale Machine Translation Evaluation for African Languages. Our system is a single multilingual translation model that translates between English and 8 South / South East African Languages, as well as between specific pairs of the African languages. We used several techniques suited for low-resource machine translation (MT), including overlap BPE, back-translation, synthetic training data generation, and adding more translation directions during training. Our results show the value of these techniques, especially for directions where very little or no bilingual training data is available.