Kranti Ch


2024

pdf bib
Retrieval-Augmented Code Generation for Situated Action Generation: A Case Study on Minecraft
Kranti Ch | Sherzod Hakimov | David Schlangen
Findings of the Association for Computational Linguistics: EMNLP 2024

In the Minecraft Collaborative Building Task, two players collaborate: an Architect (A) provides instructions to a Builder (B) to assemble a specified structure using 3D blocks. In this work, we investigate the use of large language models (LLMs) to predict the sequence of actions taken by the Builder. Leveraging LLMs’ in-context learning abilities, we use few-shot prompting techniques, that significantly improve performance over baseline methods. Additionally, we present a detailed analysis of the gaps in performance for future work.

2020

pdf bib
EmpLite: A Lightweight Sequence Labeling Model for Emphasis Selection of Short Texts
Vibhav Agarwal | Sourav Ghosh | Kranti Ch | Bharath Challa | Sonal Kumari | Harshavardhana | Barath Raj Kandur Raja
Proceedings of the Workshop on Joint NLP Modelling for Conversational AI @ ICON 2020

Word emphasis in textual content aims at conveying the desired intention by changing the size, color, typeface, style (bold, italic, etc.), and other typographical features. The emphasized words are extremely helpful in drawing the readers’ attention to specific information that the authors wish to emphasize. However, performing such emphasis using a soft keyboard for social media interactions is time-consuming and has an associated learning curve. In this paper, we propose a novel approach to automate the emphasis word detection on short written texts. To the best of our knowledge, this work presents the first lightweight deep learning approach for smartphone deployment of emphasis selection. Experimental results show that our approach achieves comparable accuracy at a much lower model size than existing models. Our best lightweight model has a memory footprint of 2.82 MB with a matching score of 0.716 on SemEval-2020 public benchmark dataset.