Krishna Srihasam
2021
Applied Medical Code Mapping with Character-based Deep Learning Models and Word-based Logic
John Langton
|
Krishna Srihasam
Proceedings of the 1st and 2nd Workshops on Natural Logic Meets Machine Learning (NALOMA)
Logical Observation Identifiers Names and Codes (LOINC) is a standard set of codes that enable clinicians to communicate about medical tests. Laboratories depend on LOINC to identify what tests a doctor orders for a patient. However, clinicians often use site specific, custom codes in their medical records systems that can include shorthand, spelling mistakes, and invented acronyms. Software solutions must map from these custom codes to the LOINC standard to support data interoperability. A key challenge is that LOINC is comprised of six elements. Mapping requires not only extracting those elements, but also combining them according to LOINC logic. We found that character-based deep learning excels at extracting LOINC elements while logic based methods are more effective for combining those elements into complete LOINC values. In this paper, we present an ensemble of machine learning and logic that is currently used in several medical facilities to map from
2020
Comparison of Machine Learning Methods for Multi-label Classification of Nursing Education and Licensure Exam Questions
John Langton
|
Krishna Srihasam
|
Junlin Jiang
Proceedings of the 3rd Clinical Natural Language Processing Workshop
In this paper, we evaluate several machine learning methods for multi-label classification of text questions. Every nursing student in the United States must pass the National Council Licensure Examination (NCLEX) to begin professional practice. NCLEX defines a number of competencies on which students are evaluated. By labeling test questions with NCLEX competencies, we can score students according to their performance in each competency. This information helps instructors measure how prepared students are for the NCLEX, as well as which competencies they may need help with. A key challenge is that questions may be related to more than one competency. Labeling questions with NCLEX competencies, therefore, equates to a multi-label, text classification problem where each competency is a label. Here we present an evaluation of several methods to support this use case along with a proposed approach. While our work is grounded in the nursing education domain, the methods described here can be used for any multi-label, text classification use case.