Kuan-Yu Shen
2021
Automatic Extraction of English Grammar Pattern Correction Rules
Kuan-Yu Shen
|
Yi-Chien Lin
|
Jason S. Chang
Proceedings of the 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)
We introduce a method for generating error-correction rules for grammar pattern errors in a given annotated learner corpus. In our approach, annotated edits in the learner corpus are converted into edit rules for correcting common writing errors. The method involves automatic extraction of grammar patterns, and automatic alignment of the erroneous patterns and correct patterns. At run-time, grammar patterns are extracted from the grammatically correct sentences, and correction rules are retrieved by aligning the extracted grammar patterns with the erroneous patterns. Using the proposed method, we generate 1,499 high-quality correction rules related to 232 headwords. The method can be used to assist ESL students in avoiding grammatical errors, and aid teachers in correcting students’ essays. Additionally, the method can be used in the compilation of collocation error dictionaries and the construction of grammar error correction systems.