Kunyuan Pang
2022
Divide and Denoise: Learning from Noisy Labels in Fine-Grained Entity Typing with Cluster-Wise Loss Correction
Kunyuan Pang
|
Haoyu Zhang
|
Jie Zhou
|
Ting Wang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Fine-grained Entity Typing (FET) has made great progress based on distant supervision but still suffers from label noise. Existing FET noise learning methods rely on prediction distributions in an instance-independent manner, which causes the problem of confirmation bias. In this work, we propose a clustering-based loss correction framework named Feature Cluster Loss Correction (FCLC), to address these two problems. FCLC first train a coarse backbone model as a feature extractor and noise estimator. Loss correction is then applied to each feature cluster, learning directly from the noisy labels. Experimental results on three public datasets show that FCLC achieves the best performance over existing competitive systems. Auxiliary experiments further demonstrate that FCLC is stable to hyperparameters and it does help mitigate confirmation bias. We also find that in the extreme case of no clean data, the FCLC framework still achieves competitive performance.
Multi-Document Scientific Summarization from a Knowledge Graph-Centric View
Pancheng Wang
|
Shasha Li
|
Kunyuan Pang
|
Liangliang He
|
Dong Li
|
Jintao Tang
|
Ting Wang
Proceedings of the 29th International Conference on Computational Linguistics
Multi-Document Scientific Summarization (MDSS) aims to produce coherent and concise summaries for clusters of topic-relevant scientific papers. This task requires precise understanding of paper content and accurate modeling of cross-paper relationships. Knowledge graphs convey compact and interpretable structured information for documents, which makes them ideal for content modeling and relationship modeling. In this paper, we present KGSum, an MDSS model centred on knowledge graphs during both the encoding and decoding process. Specifically, in the encoding process, two graph-based modules are proposed to incorporate knowledge graph information into paper encoding, while in the decoding process, we propose a two-stage decoder by first generating knowledge graph information of summary in the form of descriptive sentences, followed by generating the final summary. Empirical results show that the proposed architecture brings substantial improvements over baselines on the Multi-Xscience dataset.