Kyle Swanson
2022
Monte Carlo Tree Search for Interpreting Stress in Natural Language
Kyle Swanson
|
Joy Hsu
|
Mirac Suzgun
Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion
Natural language processing can facilitate the analysis of a person’s mental state from text they have written. Previous studies have developed models that can predict whether a person is experiencing a mental health condition from social media posts with high accuracy. Yet, these models cannot explain why the person is experiencing a particular mental state. In this work, we present a new method for explaining a person’s mental state from text using Monte Carlo tree search (MCTS). Our MCTS algorithm employs trained classification models to guide the search for key phrases that explain the writer’s mental state in a concise, interpretable manner. Furthermore, our algorithm can find both explanations that depend on the particular context of the text (e.g., a recent breakup) and those that are context-independent. Using a dataset of Reddit posts that exhibit stress, we demonstrate the ability of our MCTS algorithm to identify interpretable explanations for a person’s feeling of stress in both a context-dependent and context-independent manner.
2020
Rationalizing Text Matching: Learning Sparse Alignments via Optimal Transport
Kyle Swanson
|
Lili Yu
|
Tao Lei
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
Selecting input features of top relevance has become a popular method for building self-explaining models. In this work, we extend this selective rationalization approach to text matching, where the goal is to jointly select and align text pieces, such as tokens or sentences, as a justification for the downstream prediction. Our approach employs optimal transport (OT) to find a minimal cost alignment between the inputs. However, directly applying OT often produces dense and therefore uninterpretable alignments. To overcome this limitation, we introduce novel constrained variants of the OT problem that result in highly sparse alignments with controllable sparsity. Our model is end-to-end differentiable using the Sinkhorn algorithm for OT and can be trained without any alignment annotations. We evaluate our model on the StackExchange, MultiNews, e-SNLI, and MultiRC datasets. Our model achieves very sparse rationale selections with high fidelity while preserving prediction accuracy compared to strong attention baseline models.
2019
Building a Production Model for Retrieval-Based Chatbots
Kyle Swanson
|
Lili Yu
|
Christopher Fox
|
Jeremy Wohlwend
|
Tao Lei
Proceedings of the First Workshop on NLP for Conversational AI
Response suggestion is an important task for building human-computer conversation systems. Recent approaches to conversation modeling have introduced new model architectures with impressive results, but relatively little attention has been paid to whether these models would be practical in a production setting. In this paper, we describe the unique challenges of building a production retrieval-based conversation system, which selects outputs from a whitelist of candidate responses. To address these challenges, we propose a dual encoder architecture which performs rapid inference and scales well with the size of the whitelist. We also introduce and compare two methods for generating whitelists, and we carry out a comprehensive analysis of the model and whitelists. Experimental results on a large, proprietary help desk chat dataset, including both offline metrics and a human evaluation, indicate production-quality performance and illustrate key lessons about conversation modeling in practice.
Search
Co-authors
- Lili Yu 2
- Tao Lei 2
- Joy Hsu 1
- Mirac Suzgun 1
- Christopher Fox 1
- show all...