Kyuseok Shim


2025

pdf bib
DP-FROST: Differentially Private Fine-tuning of Pre-trained Models with Freezing Model Parameters
Daeyoung Hong | Woohwan Jung | Kyuseok Shim
Proceedings of the 31st International Conference on Computational Linguistics

Training models with differential privacy has received a lot of attentions since differential privacy provides theoretical guarantee of privacy preservation. For a task in a specific domain, since a large-scale pre-trained model in the same domain contains general knowledge of the task, using such a model requires less effort in designing and training the model. However, differentially privately fine-tuning such models having a large number of trainable parameters results in large degradation of utility. Thus, we propose methods that effectively fine-tune the large-scale pre-trained models with freezing unimportant parameters for downstream tasks while satisfying differential privacy. To select the parameters to be fine-tuned, we propose several efficient methods based on the gradients of model parameters. We show the effectiveness of the proposed method by performing experiments with real datasets.

2020

pdf bib
Dual Supervision Framework for Relation Extraction with Distant Supervision and Human Annotation
Woohwan Jung | Kyuseok Shim
Proceedings of the 28th International Conference on Computational Linguistics

Relation extraction (RE) has been extensively studied due to its importance in real-world applications such as knowledge base construction and question answering. Most of the existing works train the models on either distantly supervised data or human-annotated data. To take advantage of the high accuracy of human annotation and the cheap cost of distant supervision, we propose the dual supervision framework which effectively utilizes both types of data. However, simply combining the two types of data to train a RE model may decrease the prediction accuracy since distant supervision has labeling bias. We employ two separate prediction networks HA-Net and DS-Net to predict the labels by human annotation and distant supervision, respectively, to prevent the degradation of accuracy by the incorrect labeling of distant supervision. Furthermore, we propose an additional loss term called disagreement penalty to enable HA-Net to learn from distantly supervised labels. In addition, we exploit additional networks to adaptively assess the labeling bias by considering contextual information. Our performance study on sentence-level and document-level REs confirms the effectiveness of the dual supervision framework.