Lama Alsudias


2020

pdf bib
Developing an Arabic Infectious Disease Ontology to Include Non-Standard Terminology
Lama Alsudias | Paul Rayson
Proceedings of the Twelfth Language Resources and Evaluation Conference

Building ontologies is a crucial part of the semantic web endeavour. In recent years, research interest has grown rapidly in supporting languages such as Arabic in NLP in general but there has been very little research on medical ontologies for Arabic. We present a new Arabic ontology in the infectious disease domain to support various important applications including the monitoring of infectious disease spread via social media. This ontology meaningfully integrates the scientific vocabularies of infectious diseases with their informal equivalents. We use ontology learning strategies with manual checking to build the ontology. We applied three statistical methods for term extraction from selected Arabic infectious diseases articles: TF-IDF, C-value, and YAKE. We also conducted a study, by consulting around 100 individuals, to discover the informal terms related to infectious diseases in Arabic. In future work, we will automatically extract the relations for infectious disease concepts but for now these are manually created. We report two complementary experiments to evaluate the ontology. First, a quantitative evaluation of the term extraction results and an additional qualitative evaluation by a domain expert.

pdf bib
COVID-19 and Arabic Twitter: How can Arab World Governments and Public Health Organizations Learn from Social Media?
Lama Alsudias | Paul Rayson
Proceedings of the 1st Workshop on NLP for COVID-19 at ACL 2020

In March 2020, the World Health Organization announced the COVID-19 outbreak as a pandemic. Most previous social media related research has been on English tweets and COVID-19. In this study, we collect approximately 1 million Arabic tweets from the Twitter streaming API related to COVID-19. Focussing on outcomes that we believe will be useful for Public Health Organizations, we analyse them in three different ways: identifying the topics discussed during the period, detecting rumours, and predicting the source of the tweets. We use the k-means algorithm for the first goal with k=5. The topics discussed can be grouped as follows: COVID-19 statistics, prayers for God, COVID-19 locations, advise and education for prevention, and advertising. We sample 2000 tweets and label them manually for false information, correct information, and unrelated. Then, we apply three different machine learning algorithms, Logistic Regression, Support Vector Classification, and Naïve Bayes with two sets of features, word frequency approach and word embeddings. We find that Machine Learning classifiers are able to correctly identify the rumour related tweets with 84% accuracy. We also try to predict the source of the rumour related tweets depending on our previous model which is about classifying tweets into five categories: academic, media, government, health professional, and public. Around (60%) of the rumour related tweets are classified as written by health professionals and academics.

2019

pdf bib
Proceedings of the 3rd Workshop on Arabic Corpus Linguistics
Mahmoud El-Haj | Paul Rayson | Eric Atwell | Lama Alsudias
Proceedings of the 3rd Workshop on Arabic Corpus Linguistics

pdf bib
Classifying Information Sources in Arabic Twitter to Support Online Monitoring of Infectious Diseases
Lama Alsudias | Paul Rayson
Proceedings of the 3rd Workshop on Arabic Corpus Linguistics