Laura Ana Maria Oberlaender


2022

pdf bib
Experiencer-Specific Emotion and Appraisal Prediction
Maximilian Wegge | Enrica Troiano | Laura Ana Maria Oberlaender | Roman Klinger
Proceedings of the Fifth Workshop on Natural Language Processing and Computational Social Science (NLP+CSS)

Emotion classification in NLP assigns emotions to texts, such as sentences or paragraphs. With texts like “I felt guilty when he cried”, focusing on the sentence level disregards the standpoint of each participant in the situation: the writer (“I”) and the other entity (“he”) could in fact have different affective states. The emotions of different entities have been considered only partially in emotion semantic role labeling, a task that relates semantic roles to emotion cue words. Proposing a related task, we narrow the focus on the experiencers of events, and assign an emotion (if any holds) to each of them. To this end, we represent each emotion both categorically and with appraisal variables, as a psychological access to explaining why a person develops a particular emotion. On an event description corpus, our experiencer-aware models of emotions and appraisals outperform the experiencer-agnostic baselines, showing that disregarding event participants is an oversimplification for the emotion detection task.

pdf bib
x-enVENT: A Corpus of Event Descriptions with Experiencer-specific Emotion and Appraisal Annotations
Enrica Troiano | Laura Ana Maria Oberlaender | Maximilian Wegge | Roman Klinger
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Emotion classification is often formulated as the task to categorize texts into a predefined set of emotion classes. So far, this task has been the recognition of the emotion of writers and readers, as well as that of entities mentioned in the text. We argue that a classification setup for emotion analysis should be performed in an integrated manner, including the different semantic roles that participate in an emotion episode. Based on appraisal theories in psychology, which treat emotions as reactions to events, we compile an English corpus of written event descriptions. The descriptions depict emotion-eliciting circumstances, and they contain mentions of people who responded emotionally. We annotate all experiencers, including the original author, with the emotions they likely felt. In addition, we link them to the event they found salient (which can be different for different experiencers in a text) by annotating event properties, or appraisals (e.g., the perceived event undesirability, the uncertainty of its outcome). Our analysis reveals patterns in the co-occurrence of people’s emotions in interaction. Hence, this richly-annotated resource provides useful data to study emotions and event evaluations from the perspective of different roles, and it enables the development of experiencer-specific emotion and appraisal classification systems.