Lemei Zhang
2024
NLEBench+NorGLM: A Comprehensive Empirical Analysis and Benchmark Dataset for Generative Language Models in Norwegian
Peng Liu
|
Lemei Zhang
|
Terje Farup
|
Even Lauvrak
|
Jon Ingvaldsen
|
Simen Eide
|
Jon Atle Gulla
|
Zhirong Yang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Norwegian, spoken by only 5 million population, is under-representative within the most impressive breakthroughs in NLP tasks. To the best of our knowledge, there has not yet been a comprehensive evaluation of the existing language models (LMs) on Norwegian generation tasks during the article writing process. To fill this gap, we 1) compiled the existing Norwegian dataset and pre-trained 4 Norwegian Open Language Models varied from parameter scales and architectures, collectively called NorGLM; 2) introduced a comprehensive benchmark, NLEBench, for evaluating natural language generation capabilities in Norwegian, encompassing translation and human annotation. Based on the investigation, we find that: 1) the mainstream, English-dominated LM GPT-3.5 has limited capability in understanding the Norwegian context; 2) the increase in model parameter scales demonstrates limited impact on the performance of downstream tasks when the pre-training dataset is constrained in size; 3) smaller models also demonstrate the reasoning capability through Chain-of-Thought; 4) a multi-task dataset that includes synergy tasks can be used to verify the generalizability of LLMs on natural language understanding and, meanwhile, test the interconnectedness of these NLP tasks. We share our resources and code for reproducibility under a CC BY-NC 4.0 license.
2023
Pre-train, Prompt, and Recommendation: A Comprehensive Survey of Language Modeling Paradigm Adaptations in Recommender Systems
Peng Liu
|
Lemei Zhang
|
Jon Atle Gulla
Transactions of the Association for Computational Linguistics, Volume 11
The emergence of Pre-trained Language Models (PLMs) has achieved tremendous success in the field of Natural Language Processing (NLP) by learning universal representations on large corpora in a self-supervised manner. The pre-trained models and the learned representations can be beneficial to a series of downstream NLP tasks. This training paradigm has recently been adapted to the recommendation domain and is considered a promising approach by both academia and industry. In this paper, we systematically investigate how to extract and transfer knowledge from pre-trained models learned by different PLM-related training paradigms to improve recommendation performance from various perspectives, such as generality, sparsity, efficiency and effectiveness. Specifically, we propose a comprehensive taxonomy to divide existing PLM-based recommender systems w.r.t. their training strategies and objectives. Then, we analyze and summarize the connection between PLM-based training paradigms and different input data types for recommender systems. Finally, we elaborate on open issues and future research directions in this vibrant field.
Search
Co-authors
- Peng Liu 2
- Jon Atle Gulla 2
- Terje Farup 1
- Even Lauvrak 1
- Jon Ingvaldsen 1
- show all...