Lili Yu


2021

pdf bib
Proceedings of the First Workshop on Interactive Learning for Natural Language Processing
Kianté Brantley | Soham Dan | Iryna Gurevych | Ji-Ung Lee | Filip Radlinski | Hinrich Schütze | Edwin Simpson | Lili Yu
Proceedings of the First Workshop on Interactive Learning for Natural Language Processing

pdf bib
Nutri-bullets Hybrid: Consensual Multi-document Summarization
Darsh Shah | Lili Yu | Tao Lei | Regina Barzilay
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We present a method for generating comparative summaries that highlight similarities and contradictions in input documents. The key challenge in creating such summaries is the lack of large parallel training data required for training typical summarization systems. To this end, we introduce a hybrid generation approach inspired by traditional concept-to-text systems. To enable accurate comparison between different sources, the model first learns to extract pertinent relations from input documents. The content planning component uses deterministic operators to aggregate these relations after identifying a subset for inclusion into a summary. The surface realization component lexicalizes this information using a text-infilling language model. By separately modeling content selection and realization, we can effectively train them with limited annotations. We implemented and tested the model in the domain of nutrition and health – rife with inconsistencies. Compared to conventional methods, our framework leads to more faithful, relevant and aggregation-sensitive summarization – while being equally fluent.

2020

pdf bib
Interactive Classification by Asking Informative Questions
Lili Yu | Howard Chen | Sida I. Wang | Tao Lei | Yoav Artzi
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We study the potential for interaction in natural language classification. We add a limited form of interaction for intent classification, where users provide an initial query using natural language, and the system asks for additional information using binary or multi-choice questions. At each turn, our system decides between asking the most informative question or making the final classification pre-diction. The simplicity of the model allows for bootstrapping of the system without interaction data, instead relying on simple crowd-sourcing tasks. We evaluate our approach on two domains, showing the benefit of interaction and the advantage of learning to balance between asking additional questions and making the final prediction.

pdf bib
Rationalizing Text Matching: Learning Sparse Alignments via Optimal Transport
Kyle Swanson | Lili Yu | Tao Lei
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Selecting input features of top relevance has become a popular method for building self-explaining models. In this work, we extend this selective rationalization approach to text matching, where the goal is to jointly select and align text pieces, such as tokens or sentences, as a justification for the downstream prediction. Our approach employs optimal transport (OT) to find a minimal cost alignment between the inputs. However, directly applying OT often produces dense and therefore uninterpretable alignments. To overcome this limitation, we introduce novel constrained variants of the OT problem that result in highly sparse alignments with controllable sparsity. Our model is end-to-end differentiable using the Sinkhorn algorithm for OT and can be trained without any alignment annotations. We evaluate our model on the StackExchange, MultiNews, e-SNLI, and MultiRC datasets. Our model achieves very sparse rationale selections with high fidelity while preserving prediction accuracy compared to strong attention baseline models.

2019

pdf bib
Building a Production Model for Retrieval-Based Chatbots
Kyle Swanson | Lili Yu | Christopher Fox | Jeremy Wohlwend | Tao Lei
Proceedings of the First Workshop on NLP for Conversational AI

Response suggestion is an important task for building human-computer conversation systems. Recent approaches to conversation modeling have introduced new model architectures with impressive results, but relatively little attention has been paid to whether these models would be practical in a production setting. In this paper, we describe the unique challenges of building a production retrieval-based conversation system, which selects outputs from a whitelist of candidate responses. To address these challenges, we propose a dual encoder architecture which performs rapid inference and scales well with the size of the whitelist. We also introduce and compare two methods for generating whitelists, and we carry out a comprehensive analysis of the model and whitelists. Experimental results on a large, proprietary help desk chat dataset, including both offline metrics and a human evaluation, indicate production-quality performance and illustrate key lessons about conversation modeling in practice.