Liting Huang


2024

pdf bib
Zhenmei at WASSA-2024 Empathy and Personality Shared Track 2 Incorporating Pearson Correlation Coefficient as a Regularization Term for Enhanced Empathy and Emotion Prediction in Conversational Turns
Liting Huang | Huizhi Liang
Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis

In the realm of conversational empathy and emotion prediction, emotions are frequently categorized into multiple levels. This study seeks to enhance the performance of emotion prediction models by incorporating the Pearson correlation coefficient as a regularization term within the loss function. This regularization approach ensures closer alignment between predicted and actual emotion levels, mitigating extreme predictions and resulting in smoother and more consistent outputs. Such outputs are essential for capturing the subtle transitions between continuous emotion levels. Through experimental comparisons between models with and without Pearson regularization, our findings demonstrate that integrating the Pearson correlation coefficient significantly boosts model performance, yielding higher correlation scores and more accurate predictions. Our system officially ranked 9th at the Track 2: CONV-turn. The code for our model can be found at Link .

pdf bib
hyy33 at WASSA 2024 Empathy and Personality Shared Task: Using the CombinedLoss and FGM for Enhancing BERT-based Models in Emotion and Empathy Prediction from Conversation Turns
Huiyu Yang | Liting Huang | Tian Li | Nicolay Rusnachenko | Huizhi Liang
Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis

This paper presents our participation to the WASSA 2024 Shared Task on Empathy Detection and Emotion Classification and Personality Detection in Interactions. We focus on Track 2: Empathy and Emotion Prediction in Conversations Turns (CONV-turn), which consists of predicting the perceived empathy, emotion polarity and emotion intensity at turn level in a conversation. In the method, we conduct BERT and DeBERTa based finetuning, implement the CombinedLoss which consists of a structured contrastive loss and Pearson loss, adopt adversarial training using Fast Gradient Method (FGM). This method achieved Pearson correlation of 0.581 for Emotion,0.644 for Emotional Polarity and 0.544 for Empathy on the test set, with the average value of 0.590 which ranked 4th among all teams. After submission to WASSA 2024 competition, we further introduced the segmented mix-up for data augmentation, boosting for ensemble and regression experiments, which yield even better results: 0.6521 for Emotion, 0.7376 for EmotionalPolarity, 0.6326 for Empathy in Pearson correlation on the development set. The implementation and fine-tuned models are publicly-available at https://github.com/hyy-33/hyy33-WASSA-2024-Track-2.