Liva Ralaivola


2020

pdf bib
Integrating knowledge graph embeddings to improve mention representation for bridging anaphora resolution
Onkar Pandit | Pascal Denis | Liva Ralaivola
Proceedings of the Third Workshop on Computational Models of Reference, Anaphora and Coreference

Lexical semantics and world knowledge are crucial for interpreting bridging anaphora. Yet, existing computational methods for acquiring and injecting this type of information into bridging resolution systems suffer important limitations. Based on explicit querying of external knowledge bases, earlier approaches are computationally expensive (hence, hardly scalable) and they map the data to be processed into high-dimensional spaces (careful handling of the curse of dimensionality and overfitting has to be in order). In this work, we take a different and principled approach which naturally addresses these issues. Specifically, we convert the external knowledge source (in this case, WordNet) into a graph, and learn embeddings of the graph nodes of low dimension to capture the crucial features of the graph topology and, at the same time, rich semantic information. Once properly identified from the mention text spans, these low dimensional graph node embeddings are combined with distributional text-based embeddings to provide enhanced mention representations. We illustrate the effectiveness of our approach by evaluating it on commonly used datasets, namely ISNotes and BASHI. Our enhanced mention representations yield significant accuracy improvements on both datasets when compared to different standalone text-based mention representations.

2017

pdf bib
Online Learning of Task-specific Word Representations with a Joint Biconvex Passive-Aggressive Algorithm
Pascal Denis | Liva Ralaivola
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers

This paper presents a new, efficient method for learning task-specific word vectors using a variant of the Passive-Aggressive algorithm. Specifically, this algorithm learns a word embedding matrix in tandem with the classifier parameters in an online fashion, solving a bi-convex constrained optimization at each iteration. We provide a theoretical analysis of this new algorithm in terms of regret bounds, and evaluate it on both synthetic data and NLP classification problems, including text classification and sentiment analysis. In the latter case, we compare various pre-trained word vectors to initialize our word embedding matrix, and show that the matrix learned by our algorithm vastly outperforms the initial matrix, with performance results comparable or above the state-of-the-art on these tasks.