Lizhi Ma
2024
PsyGUARD: An Automated System for Suicide Detection and Risk Assessment in Psychological Counseling
Huachuan Qiu
|
Lizhi Ma
|
Zhenzhong Lan
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
As awareness of mental health issues grows, online counseling support services are becoming increasingly prevalent worldwide. Detecting whether users express suicidal ideation in text-based counseling services is crucial for identifying and prioritizing at-risk individuals. However, the lack of domain-specific systems to facilitate fine-grained suicide detection and corresponding risk assessment in online counseling poses a significant challenge for automated crisis intervention aimed at suicide prevention. In this paper, we propose PsyGUARD, an automated system for detecting suicide ideation and assessing risk in psychological counseling. To achieve this, we first develop a detailed taxonomy for detecting suicide ideation based on foundational theories. We then curate a large-scale, high-quality dataset called PsySUICIDE for suicide detection. To evaluate the capabilities of automated systems in fine-grained suicide detection, we establish a range of baselines. Subsequently, to assist automated services in providing safe, helpful, and tailored responses for further assessment, we propose to build a suite of risk assessment frameworks. Our study not only provides an insightful analysis of the effectiveness of automated risk assessment systems based on fine-grained suicide detection but also highlights their potential to improve mental health services on online counseling platforms. Code, data, and models are available at https://github.com/qiuhuachuan/PsyGUARD.
Understanding the Therapeutic Relationship between Counselors and Clients in Online Text-based Counseling using LLMs
Anqi Li
|
Yu Lu
|
Nirui Song
|
Shuai Zhang
|
Lizhi Ma
|
Zhenzhong Lan
Findings of the Association for Computational Linguistics: EMNLP 2024
Robust therapeutic relationships between counselors and clients are fundamental to counseling effectiveness. The assessment of therapeutic alliance is well-established in traditional face-to-face therapy but may not directly translate to text-based settings. With millions of individuals seeking support through online text-based counseling, understanding the relationship in such contexts is crucial.In this paper, we present an automatic approach using large language models (LLMs) to understand the development of therapeutic alliance in text-based counseling. We adapt a theoretically grounded framework specifically to the context of online text-based counseling and develop comprehensive guidelines for characterizing the alliance. We collect a comprehensive counseling dataset and conduct multiple expert evaluations on a subset based on this framework. Our LLM-based approach, combined with guidelines and simultaneous extraction of supportive evidence underlying its predictions, demonstrates effectiveness in identifying the therapeutic alliance. Through further LLM-based evaluations on additional conversations, our findings underscore the challenges counselors face in cultivating strong online relationships with clients. Furthermore, we demonstrate the potential of LLM-based feedback mechanisms to enhance counselors’ ability to build relationships, supported by a small-scale proof-of-concept.
2023
Understanding Client Reactions in Online Mental Health Counseling
Anqi Li
|
Lizhi Ma
|
Yaling Mei
|
Hongliang He
|
Shuai Zhang
|
Huachuan Qiu
|
Zhenzhong Lan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Communication success relies heavily on reading participants’ reactions. Such feedback is especially important for mental health counselors, who must carefully consider the client’s progress and adjust their approach accordingly. However, previous NLP research on counseling has mainly focused on studying counselors’ intervention strategies rather than their clients’ reactions to the intervention. This work aims to fill this gap by developing a theoretically grounded annotation framework that encompasses counselors’ strategies and client reaction behaviors. The framework has been tested against a large-scale, high-quality text-based counseling dataset we collected over the past two years from an online welfare counseling platform. Our study show how clients react to counselors’ strategies, how such reactions affect the final counseling outcomes, and how counselors can adjust their strategies in response to these reactions. We also demonstrate that this study can help counselors automatically predict their clients’ states.
Search
Fix data
Co-authors
- Zhenzhong Lan 3
- Anqi Li 2
- Huachuan Qiu 2
- Shuai Zhang 2
- Hongliang He 1
- show all...