Lorenzo Pastore


2023

pdf bib
On the Generalization of Projection-Based Gender Debiasing in Word Embedding
Elisabetta Fersini | Antonio Candelieri | Lorenzo Pastore
Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing

Gender bias estimation and mitigation techniques in word embeddings lack an understanding of their generalization capabilities. In this work, we complement prior research by comparing in a systematic way four gender bias metrics (Word Embedding Association Tes, Relative Negative Sentiment Bias, Embedding Coherence Test and Bias Analogy Test), two types of projection-based gender mitigation strategies (hard- and soft-debiasing) on three well-known word embedding representations (Word2Vec, FastText and Glove). The experiments have shown that the considered word embeddings are consistent between them but the debiasing techniques are inconsistent across the different metrics, also highlighting the potential risk of unintended bias after the mitigation strategies.