Obtaining training data for Question Answering (QA) is time-consuming and resource-intensive, and existing QA datasets are only available for limited domains and languages. In this work, we explore to what extent high quality training data is actually required for Extractive QA, and investigate the possibility of unsupervised Extractive QA. We approach this problem by first learning to generate context, question and answer triples in an unsupervised manner, which we then use to synthesize Extractive QA training data automatically. To generate such triples, we first sample random context paragraphs from a large corpus of documents and then random noun phrases or Named Entity mentions from these paragraphs as answers. Next we convert answers in context to “fill-in-the-blank” cloze questions and finally translate them into natural questions. We propose and compare various unsupervised ways to perform cloze-to-natural question translation, including training an unsupervised NMT model using non-aligned corpora of natural questions and cloze questions as well as a rule-based approach. We find that modern QA models can learn to answer human questions surprisingly well using only synthetic training data. We demonstrate that, without using the SQuAD training data at all, our approach achieves 56.4 F1 on SQuAD v1 (64.5 F1 when the answer is a Named Entity mention), outperforming early supervised models.
Search-oriented conversational systems rely on information needs expressed in natural language (NL). We focus here on the understanding of NL expressions for building keyword-based queries. We propose a reinforcement-learning-driven translation model framework able to 1) learn the translation from NL expressions to queries in a supervised way, and, 2) to overcome the lack of large-scale dataset by framing the translation model as a word selection approach and injecting relevance feedback as a reward in the learning process. Experiments are carried out on two TREC datasets. We outline the effectiveness of our approach.
Machine translation systems achieve near human-level performance on some languages, yet their effectiveness strongly relies on the availability of large amounts of parallel sentences, which hinders their applicability to the majority of language pairs. This work investigates how to learn to translate when having access to only large monolingual corpora in each language. We propose two model variants, a neural and a phrase-based model. Both versions leverage a careful initialization of the parameters, the denoising effect of language models and automatic generation of parallel data by iterative back-translation. These models are significantly better than methods from the literature, while being simpler and having fewer hyper-parameters. On the widely used WMT’14 English-French and WMT’16 German-English benchmarks, our models respectively obtain 28.1 and 25.2 BLEU points without using a single parallel sentence, outperforming the state of the art by more than 11 BLEU points. On low-resource languages like English-Urdu and English-Romanian, our methods achieve even better results than semi-supervised and supervised approaches leveraging the paucity of available bitexts. Our code for NMT and PBSMT is publicly available.