Ludovica Cerini


2024

pdf bib
Representing Abstract Concepts with Images: An Investigation with Large Language Models
Ludovica Cerini | Alessandro Bondielli | Alessandro Lenci
Proceedings of the Workshop on Cognitive Aspects of the Lexicon @ LREC-COLING 2024

Multimodal metaphorical interpretation of abstract concepts has always been a debated problem in many research fields, including cognitive linguistics and NLP. With the dramatic improvements of Large Language Models (LLMs) and the increasing attention toward multimodal Vision-Language Models (VLMs), there has been pronounced attention on the conceptualization of abstracts. Nevertheless, a systematic scientific investigation is still lacking. This work introduces a framework designed to shed light on the indirect grounding mechanisms that anchor the meaning of abstract concepts to concrete situations (e.g. ability - a person skating), following the idea that abstracts acquire meaning from embodied and situated simulation. We assessed human and LLMs performances by a situation generation task. Moreover, we assess the figurative richness of images depicting concrete scenarios, via a text-to-image retrieval task performed on LAION-400M.

2022

pdf bib
From Speed to Car and Back: An Exploratory Study about Associations between Abstract Nouns and Images
Ludovica Cerini | Eliana Di Palma | Alessandro Lenci
Proceedings of the 2022 CLASP Conference on (Dis)embodiment

Abstract concepts, notwithstanding their lack of physical referents in real world, are grounded in sensorimotor experience. In fact, images depicting concrete entities may be associated to abstract concepts, both via direct and indirect grounding processes. However, what are the links connecting the concrete concepts represented by images and abstract ones is still unclear. To investigate these links, we conducted a preliminary study collecting word association data and image-abstract word pair ratings, to identify whether the associations between visual and verbal systems rely on the same conceptual mappings. The goal of this research is to understand to what extent linguistic associations could be confirmed with visual stimuli, in order to have a starting point for multimodal analysis of abstract and concrete concepts.

2021

pdf bib
A howling success or a working sea? Testing what BERT knows about metaphors
Paolo Pedinotti | Eliana Di Palma | Ludovica Cerini | Alessandro Lenci
Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

Metaphor is a widespread linguistic and cognitive phenomenon that is ruled by mechanisms which have received attention in the literature. Transformer Language Models such as BERT have brought improvements in metaphor-related tasks. However, they have been used only in application contexts, while their knowledge of the phenomenon has not been analyzed. To test what BERT knows about metaphors, we challenge it on a new dataset that we designed to test various aspects of this phenomenon such as variations in linguistic structure, variations in conventionality, the boundaries of the plausibility of a metaphor and the interpretations that we attribute to metaphoric expressions. Results bring out some tendencies that suggest that the model can reproduce some human intuitions about metaphors.