Madhumitha M
2024
TechWhiz@DravidianLangTech 2024: Fake News Detection Using Deep Learning Models
Madhumitha M
|
Kunguma M
|
Tejashri J
|
Jerin Mahibha C
Proceedings of the Fourth Workshop on Speech, Vision, and Language Technologies for Dravidian Languages
The ever-evolving landscape of online social media has initiated a transformative phase in communication, presenting unprecedented opportunities alongside inherent challenges. The pervasive issue of false information, commonly termed fake news, has emerged as a significant concern within these dynamic platforms. This study delves into the domain of Fake News Detection, with a specific focus on Malayalam. Utilizing advanced transformer models like mBERT, ALBERT, and XMLRoBERTa, our research proficiently classifies social media text into original or fake categories. Notably, our proposed model achieved commendable results, securing a rank of 3 in Task 1 with macro F1 scores of 0.84 using mBERT, 0.56 using ALBERT, and 0.84 using XMLRoBERTa. In Task 2, the XMLRoBERTa model excelled with a rank of 12, attaining a macro F1 score of 0.21, while mBERT and BERT achieved scores of 0.16 and 0.11, respectively. This research aims to develop robust systems capable of discerning authentic from deceptive content, a crucial endeavor in maintaining information reliability on social media platforms amid the rampant spread of misinformation.
2023
TechWhiz@LT-EDI-2023: Transformer Models to Detect Levels of Depression from Social Media Text
Madhumitha M
|
Jerin Mahibha C
|
Thenmozhi D.
Proceedings of the Third Workshop on Language Technology for Equality, Diversity and Inclusion
Depression is a mental fitness disorder from persistent reactions of unhappiness, void, and a deficit of interest in activities. It can influence differing facets of one’s life, containing their hopes, sympathy, and nature. Depression can stem from a sort of determinant, in the way that ancestral willingness, life occurrences, and social circumstances. In current years, the influence of social media on mental fitness has become an increasing concern. Excessive use of social media and the negative facets that guide it, can exacerbate or cause impressions of distress. The nonstop exposure to cautiously curated lives, social comparison, cyberbullying, and the pressure to meet unreal standards can impact an individual’s pride, social connections, and overall well-being. We participated in the shared task at DepSignLT-EDI@RANLP 2023 and have proposed a model that identifies the levels of depression from social media text using the data set shared for the task. Different transformer models like ALBERT and RoBERTa are used by the proposed model for implementing the task. The macro F1 score obtained by ALBERT model and RoBERTa model are 0.258 and 0.143 respectively.