Manuel Weigand
2022
Conspiracy Narratives in the Protest Movement Against COVID-19 Restrictions in Germany. A Long-term Content Analysis of Telegram Chat Groups.
Manuel Weigand
|
Maximilian Weber
|
Johannes Gruber
Proceedings of the Fifth Workshop on Natural Language Processing and Computational Social Science (NLP+CSS)
From the start of the COVID-19 pandemic in Germany, different groups have been protesting measures implemented by different government bodies in Germany to control the pandemic. It was widely claimed that many of the offline and online protests were driven by conspiracy narratives disseminated through groups and channels on the messenger app Telegram. We investigate this claim by measuring the frequency of conspiracy narratives in messages from open Telegram chat groups of the Querdenken movement, set up to organize protests against COVID-19 restrictions in Germany. We furthermore explore the content of these messages using topic modelling. To this end, we collected 822k text messages sent between April 2020 and May 2022 in 34 chat groups. By fine-tuning a Distilbert model, using self-annotated data, we find that 8.24% of the sent messages contain signs of conspiracy narratives. This number is not static, however, as the share of conspiracy messages grew while the overall number of messages shows a downward trend since its peak at the end of 2020. We further find a mix of known conspiracy narratives make up the topics in our topic model. Our findings suggest that the Querdenken movement is getting smaller over time, but its remaining members focus even more on conspiracy narratives.